Cadmium (Cd) enters the food chain from polluted soils via contaminated cereals and vegetables; therefore, an understanding of Cd bioaccessibility, bioavailability, and toxicity in humans through rice grain is needed. This study assessed the Cd bioaccessibility, bioavailability, and toxicity to humans from rice grown on Cd-contaminated soils using an in vitro digestion method combined with a Caco-2/HL-7702 cell model. Cadmium bioaccessibility (18.45-30.41%) and bioavailability (4.04-8.62%) were found to be significantly higher in yellow soil (YS) rice than calcareous soil (CS) rice with the corresponding values of 6.89-11.43 and 1.77-2.25%, respectively. Toxicity assays showed an initial toxicity in YS rice at 6 mg kg(-1) Cd, whereas CS rice did not show any significant change due to low Cd concentrations. The acidic soils of Cd-contaminated areas can contribute to a higher dietary intake of Cd. Therefore, it is imperative to monitor Cd concentration in rice to minimize human health risk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf505557g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!