Purpose: To compare the outcome of arthrocentesis alone and arthrocentesis with sodium hyaluronate in internal derangement of TMJ.

Materials And Methods: 20 patients of disc displacement with reduction of TMJ were randomized into 2 experimental groups. Control group of patients received arthrocentesis alone and study group of patients received arthrocentesis with sodium hyaluronate. Patients TMJ status and clinical symptoms were evaluated for 6 months follow up. The clinical parameter recorded were maximal mouth opening (MMO), lateral excursions (right and left side), protrusive movement, joint noises, and pain (at rest, at function).

Results: When 2 groups are compared there was no statistically significant difference in terms of inter-incisal opening, lateral excursion, protrusive movement, joint noises and pain however the group with sodium hyaluronidase has shown better results than the control group.

Conclusion: Both study and control group found to be statistically insignificant but patient who were in the group of arthrocentesis with admission of sodium hyaluronidase had better results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4306992PMC
http://dx.doi.org/10.1016/j.jobcr.2013.08.001DOI Listing

Publication Analysis

Top Keywords

sodium hyaluronate
12
internal derangement
8
arthrocentesis sodium
8
control group
8
group patients
8
patients received
8
received arthrocentesis
8
protrusive movement
8
movement joint
8
joint noises
8

Similar Publications

3D Printing of a Self-Healing, Bioactive, and Dual-Cross-Linked Polysaccharide-Based Composite Hydrogel as a Scaffold for Bone Tissue Engineering.

ACS Appl Bio Mater

January 2025

Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.

Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.

View Article and Find Full Text PDF

Carrier-Free, Hyaluronic Acid-Modified Self-Assembled Doxorubicin, and Chlorin e6 Nanoparticles Enhance Combined Chemo- and Photodynamic Therapy in vivo.

Int J Nanomedicine

December 2024

State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.

Background: Developing carrier-free nanomedicines via self-assembly of two antitumor drug molecules is a potential strategy for enhancing the combination treatment of tumors. Similarly, conventional chemotherapy combined with photodynamic therapy may synergistically improve the antitumor effect while minimizing the adverse reactions associated with antitumor treatment. Hyaluronic acid (HA) can bind to overexpressed HA receptors on the tumor cell surface, increasing cell internalization and resulting in good tumor-targeting properties.

View Article and Find Full Text PDF

Kidney explant cultures are traditionally carried out at air-liquid interfaces, which disrupts 3D tissue structure and limits interpretation of developmental data. To overcome this limitation, we developed a 3D culture technique using hydrogel embedding to capture morphogenesis in real time. We show that 3D culture better approximates -like niche spacing and dynamic tubule tip rearrangement, as well as -like presentation of branching defects under perturbations to glial cell-derived neurotrophic factor (GDNF)- RE arranged during T ransfection (RET) tyrosine kinase signaling.

View Article and Find Full Text PDF

Effect of Hyaluronan Molecular Weight on the Stability and Biofunctionality of Microfibers Assembled by Interfacial Polyelectrolyte Complexation.

ACS Appl Mater Interfaces

January 2025

3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-694 Barco, Guimarães, Portugal.

Nervous system disorders are characterized by a progressive loss of function and structure of neurons that ultimately leads to a decline in cognitive and motor functions. In this study, we used interfacial polyelectrolyte complexation (IPC) to produce fibers for neural tissue regeneration. IPC is a processing method that allows spinning of sensitive biopolymers.

View Article and Find Full Text PDF

Objective: This study explores whether hyaluronic acid (HA) of different molecular weights and collagen, given their role in tendon extracellular matrix maintenance, have a synergistic effect on human tendon-derived cells, with the aim to improve the treatment of tendinopathy.

Material: Human monocytes (CRL-9855™) and primary Achilles tendon-derived cells.

Treatment: The collagen/HA ratio was based on the formulation of the commercial food supplement TendoGenIAL™.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!