Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Coarse graining of complex systems possessing many degrees of freedom can often be a useful approach for analyzing and understanding key features of these systems in terms of just a few variables. The relevant energy landscape in a coarse-grained description is the free energy surface as a function of the coarse-grained variables, which, despite the dimensional reduction, can still be an object of high dimension. Consequently, navigating and exploring this high-dimensional free energy surface is a nontrivial task. In this paper, we use techniques from multiscale modeling, stochastic optimization, and machine learning to devise a strategy for locating minima and saddle points (termed "landmarks") on a high-dimensional free energy surface "on the fly" and without requiring prior knowledge of or an explicit form for the surface. In addition, we propose a compact graph representation of the landmarks and connections between them, and we show that the graph nodes can be subsequently analyzed and clustered based on key attributes that elucidate important properties of the system. Finally, we show that knowledge of landmark locations allows for the efficient determination of their relative free energies via enhanced sampling techniques.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4371946 | PMC |
http://dx.doi.org/10.1073/pnas.1418241112 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!