Analysis for Genetic Modifiers of Disease Severity in Patients With Long-QT Syndrome Type 2.

Circ Cardiovasc Genet

Department of Clinical and Experimental Cardiology (I.C.R.M.K., P.G.P., J.B., T.T.K., A.A.M.W., C.R.B.), Department of Clinical Epidemiology, Biostatistics and Bioinformatics (I.C.R.M.K., M.W.T.T.), and Department of Clinical Genetics (N.H.), Academic Medical Center, Amsterdam, the Netherlands; ICIN (Netherlands Heart Institute) (J.B., A.A.M.W., C.R.B.), Utrecht, the Netherlands; Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1087, L'Institut du Thorax, Nantes, France (J.B., J.-J.S.); Centre National de la Recherche Scientifique (CNRS) UMR 6291, Nantes, France (J.B., J.-J.S.); Université de Nantes, Nantes, France (J.B., J.-J.S.); Department of Medicine I, University Hospital Munich, Campus Grosshadern and Innenstadt, Ludwig-Maximilians University, Munich, Germany (M.F.S., B.M.B., S.K.); German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany (S.K.T.M.); Institute for Genetics of Heart Diseases, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany (S.Z., A.H., B.S., E.S.-B.); Interdisciplinary Centre for Clinical Research (IZKF) of the University of Münster, Münster, Germany (S.Z., A.H., B.S., E.S.-B.); Institute of Bioinformatics and Systems Biology (A.P.), and Institute of Human Genetics (A.P., P.L., T.M.), Helmholtz Zentrum München, Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, Munich, Germany (A.P., P.L., T.M.); Department of Medicine (R.J.M., N.H.B.), Department of Molecular and Cellular Pharmacology (R.J.M., N.H.B.), and Hussmann Institute of Human Genomics (R.J.M., N.H.B.), University of Miami Miller School of Medicine, FL; Department of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (D.M.R.); Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Kingdom of Saudi Arabia (A.A.M.W.); and Centre Hospitalier Universitaire (CHU) Nantes, L'Institut du Thorax, Service de Cardiologie, Nantes, France (J.-J.S.).

Published: June 2015

Background: Considerable interest exists in the identification of genetic modifiers of disease severity in the long-QT syndrome (LQTS) as their identification may contribute to refinement of risk stratification.

Methods And Results: We searched for single-nucleotide polymorphisms (SNPs) that modulate the corrected QT (QTc)-interval and the occurrence of cardiac events in 639 patients harboring different mutations in KCNH2. We analyzed 1201 SNPs in and around 18 candidate genes, and in another approach investigated 22 independent SNPs previously identified as modulators of QTc-interval in genome-wide association studies in the general population. In an analysis for quantitative effects on the QTc-interval, 3 independent SNPs at NOS1AP (rs10494366, P=9.5×10(-8); rs12143842, P=4.8×10(-7); and rs2880058, P=8.6×10(-7)) were strongly associated with the QTc-interval with marked effects (>12 ms/allele). Analysis of patients versus general population controls uncovered enrichment of QTc-prolonging alleles in patients for 2 SNPs, located respectively at NOS1AP (rs12029454; odds ratio, 1.85; 95% confidence interval, 1.32-2.59; P=3×10(-4)) and KCNQ1 (rs12576239; odds ratio, 1.84; 95% confidence interval, 1.31-2.60; P=5×10(-4)). An analysis of the cumulative effect of the 6 NOS1AP SNPs by means of a multilocus genetic risk score (GRS(NOS1AP)) uncovered a strong linear relationship between GRS(NOS1AP) and the QTc-interval (P=4.2×10(-7)). Furthermore, patients with a GRS(NOS1AP) in the lowest quartile had a lower relative risk of cardiac events compared with patients in the other quartiles combined (P=0.039).

Conclusions: We uncovered unexpectedly large effects of NOS1AP SNPs on the QTc-interval and a trend for effects on risk of cardiac events. For the first time, we linked common genetic variation at KCNQ1 with risk of long-QT syndrome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4770255PMC
http://dx.doi.org/10.1161/CIRCGENETICS.114.000785DOI Listing

Publication Analysis

Top Keywords

long-qt syndrome
12
cardiac events
12
genetic modifiers
8
modifiers disease
8
disease severity
8
independent snps
8
general population
8
odds ratio
8
95% confidence
8
confidence interval
8

Similar Publications

Arrhythmogenic calmodulin variants D131E and Q135P disrupt interaction with the L-type voltage-gated Ca channel (Ca1.2) and reduce Ca-dependent inactivation.

Acta Physiol (Oxf)

February 2025

Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.

Aim: Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship.

View Article and Find Full Text PDF

We report the case of a 29-year-old male soldier with a time in service above 10 years, found to have asymptomatic long QT syndrome (LQTS), a condition associated with increased risk of potentially fatal ventricular arrhythmias, during a flight physical. A review of his past medical history revealed a transient QT prolongation during an episode of hypoglycemia due to endogenous hyperinsulinism caused by an insulinoma, as an infantryman 7 years earlier; the resolution of the QT prolongation was spontaneous. He was evaluated and considered fit for duty by cardiology.

View Article and Find Full Text PDF

Sepiapterin is an exogenously synthesized new chemical entity that is structurally equivalent to endogenous sepiapterin, a biological precursor of tetrahydrobiopterin (BH), which is a cofactor for phenylalanine hydroxylase. Sepiapterin is being developed for the treatment of hyperphenylalaninemia in pediatric and adult patients with phenylketonuria (PKU). This study employed concentration-QT interval analysis to assess QT prolongation risk following sepiapterin treatment.

View Article and Find Full Text PDF

The Role of RyR2 Mutations in Congenital Heart Diseases: Insights Into Cardiac Electrophysiological Mechanisms.

J Cardiovasc Electrophysiol

January 2025

Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.

Ryanodine receptor 2 (RyR2) protein, a calcium ion release channel in the sarcoplasmic reticulum (SR) of myocardial cells, plays a crucial role in regulating cardiac systolic and diastolic functions. Mutations in RyR2 and its dysfunction are implicated in various congenital heart diseases (CHDs). Studies have shown that mutations in the RYR2 gene, which encodes the RyR2 protein, are linked to several cardiac arrhythmias, including catecholaminergic polymorphic ventricular tachycardia (CPVT), long QT syndrome (LQTS), calcium release deficiency syndrome (CRDS), and atrial fibrillation (AF).

View Article and Find Full Text PDF

Deep Neural Network Analysis of the 12-Lead Electrocardiogram Distinguishes Patients With Congenital Long QT Syndrome From Patients With Acquired QT Prolongation.

Mayo Clin Proc

January 2025

Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN; Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN; Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN. Electronic address:

Objective: To test whether an artificial intelligence (AI) deep neural network (DNN)-derived analysis of the 12-lead electrocardiogram (ECG) can distinguish patients with long QT syndrome (LQTS) from those with acquired QT prolongation.

Methods: The study cohort included all patients with genetically confirmed LQTS evaluated in the Windland Smith Rice Genetic Heart Rhythm Clinic and controls from Mayo Clinic's ECG data vault comprising more than 2.5 million patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!