Only one out of four mammalian arrestin subtypes, arrestin-3, facilitates the activation of JNK family kinases. Here we describe two different protocols used for elucidating the mechanisms involved. One is based on reconstitution of signaling modules from purified proteins: arrestin-3, MKK4, MKK7, JNK1, JNK2, and JNK3. The main advantage of this method is that it unambiguously establishes which effects are direct because only intended purified proteins are present in these assays. The key drawback is that the upstream-most kinases of these cascades, ASK1 or other MAPKKKs, are not available in purified form, limiting reconstitution to incomplete two-kinase modules. The other approach is used for analyzing the effects of arrestin-3 on JNK activation in intact cells. In this case, signaling modules include ASK1 and/or other MAPKKKs. However, as every cell expresses thousands of different proteins their possible effects on the readout cannot be excluded. Nonetheless, the combination of in vitro reconstitution from purified proteins and cell-based assays makes it possible to elucidate the mechanisms of arrestin-3-dependent activation of JNK family kinases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361079 | PMC |
http://dx.doi.org/10.1002/0471141755.ph0212s68 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.
Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.
View Article and Find Full Text PDFJ Med Chem
January 2025
State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.
MTDH-SND1 protein-protein interaction (PPI) plays an important role in the initiation and development of tumors, and it is a target for the treatment of breast cancer. In this study, we identified and synthesized a series of novel small-molecule inhibitors of MTDH-SND1 PPI. The representative compound showed potent activity against MTDH-SND1 PPI with an IC of 487 ± 99 nM and tight binding to the SND1-purified protein with a value of 279 ± 17 nM.
View Article and Find Full Text PDFCells
December 2024
Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan.
Eosinophilic chronic rhinosinusitis (ECRS), a CRS with nasal polyps (CRSwNP), is characterized by eosinophilic infiltration with type 2 inflammation and is highly associated with bronchial asthma. Intractable ECRS with poorly controlled asthma is recognized as a difficult-to-treat eosinophilic airway inflammation. Although eosinophils are activated and coincubation with airway epithelial cells prolongs their survival, the interaction mechanism between eosinophils and epithelial cells is unclear.
View Article and Find Full Text PDFViral Immunol
January 2025
Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes, Mexico.
Respiratory syncytial virus (RSV) is one of the most important etiologies of acute respiratory infections that cause bronchiolitis in children under 5 years of age. Treatments are expensive, no vaccine is available, and this is an important cause of hospitalization. Costimulatory molecules have been reported to be good inducers of antiviral type 1 immune response.
View Article and Find Full Text PDFNatl Sci Rev
December 2024
Aix Marseille Univ, CEA, CNRS, Institute of Bioscience and Biotechnology of Aix Marseille, BIAM, Saint-Paul-Lez-Durance 13108, France.
Lipid droplets (LDs) are the major sites of lipid and energy homeostasis. However, few LD biogenesis proteins have been identified. Using model microalga , we show that ABHD1, an α/β-hydrolase domain-containing protein, is localized to the LD surface and stimulates LD formation through two actions: one enzymatic and one structural.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!