Lentivirus-Mediated Knockdown of TCTN1 Inhibits Glioma Cell Proliferation.

Appl Biochem Biotechnol

Department of Neurosurgery, Nanjing General Hospital of Nanjing Military Command (Jinling Hospital), 305 East Zhongshan Road, Nanjing, 210008, Jiangsu, China,

Published: May 2015

Tectonic-1, also named as TCTN1 or TECT1, which belongs to a family of signal-sequence-containing secreted and transmembrane proteins evolutionarily conserved among eukaryotes, was reported to be involved in central nervous system development and ciliogenesis. In this paper, we found that TCTN1 is extensively expressed in human glioma cell lines. To clarify the role of TCTN1 in glioma, we employed lentivirus-mediated short hairpin RNA to knock down TCTN1 expression in U251 and U87MG glioma cells. Knockdown of TCTN1 potently inhibited cell proliferation, as determined by MTT and colony formation assays. Cell cycle analysis showed depletion of TCTN1 led to both U251 and U87MG cells arrested in the G0/G1 phase. These data suggest TCTN1 is essential for glioma cell viability, and dysregulation of TCTN1 may play a key role in glioma tumorigenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-015-1498-1DOI Listing

Publication Analysis

Top Keywords

glioma cell
12
tctn1
9
knockdown tctn1
8
cell proliferation
8
u251 u87mg
8
glioma
6
cell
5
lentivirus-mediated knockdown
4
tctn1 inhibits
4
inhibits glioma
4

Similar Publications

Autophagy in brain tumors: molecular mechanisms, challenges, and therapeutic opportunities.

J Transl Med

January 2025

Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, China.

Autophagy is responsible for maintaining cellular balance and ensuring survival. Autophagy plays a crucial role in the development of diseases, particularly human cancers, with actions that can either promote survival or induce cell death. However, brain tumors contribute to high levels of both mortality and morbidity globally, with resistance to treatments being acquired due to genetic mutations and dysregulation of molecular mechanisms, among other factors.

View Article and Find Full Text PDF

The association of necrosis in tumors with poor prognosis implies a potential tumor-promoting role. However, the mechanisms underlying cell death in this context and how damaged tissue contributes to tumor progression remain unclear. Here, we identified p38 mitogen-activated protein kinases (p38 MAPK, a.

View Article and Find Full Text PDF

Surgical Transplantation of Tumor Cells into the Spinal Cord of Mice.

J Vis Exp

December 2024

Beijing Institute of Brain Disorders, Capital Medical University; Laboratory of Brain Disorders, Ministry of Science and Technology, Capital Medical University; Collaborative Innovation Center for Brain Disorders, Capital Medical University;

Spinal cord gliomas are commonly malignant tumors of the spinal cord, leading to a high rate of disability. However, uniform treatment guidelines and comprehensive data on spinal cord gliomas remain limited due to the lack of suitable preclinical animal models. Developing a simple and reproducible animal model has become essential for advancing basic and translational research.

View Article and Find Full Text PDF

Glioblastoma Multiforme (GBM) is the most prevalent and highly malignant form of adult brain cancer characterized by poor overall survival rates. Effective therapeutic modalities remain limited, necessitating the search for novel treatments. Neurodevelopmental pathways have been implicated in glioma formation, with key neurodevelopmental regulators being re- expressed or co-opted during glioma tumorigenesis.

View Article and Find Full Text PDF

Significance: Personalized photodynamic therapy (PDT) treatment planning requires knowledge of the spatial and temporal co-localization of photons, photosensitizers (PSs), and oxygen. The inter- and intra-subject variability in the photosensitizer concentration can lead to suboptimal outcomes using standard treatment plans.

Aim: We aim to quantify the PS spatial variation in tumors and its effect on PDT treatment planning solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!