Aims: Lysophosphatidylcholine (LPC), a bioactive lipid, regulates a wide array of biological processes. LPC could be deacylated to form glycerophosphocholine by neuropathy target esterase (NTE)/Swiss cheese protein (SWS). Although NTE/SWS is important in maintaining Ca(2+) homeostasis, the role of LPC in regulating the intracellular calcium concentration ([Ca(2+)]i) in Drosophila remains poorly understood. We aimed to study the mechanism of LPC-induced [Ca(2+)]i changes in Drosophila S2 cells.
Main Methods: The [Ca(2+)]i of Drosophila S2 cells was measured by fluorescence spectrophotometry after loading the cells with the calcium-sensitive fluorescent probe Fura-2/AM.
Key Findings: Our results demonstrated that LPC could cause a rapid, dose-dependent increase in the [Ca(2+)]i in the presence of external calcium ([Ca(2+)]e). The LPC-induced [Ca(2+)]i increase was reduced by 60.7% in the absence of [Ca(2+)]e. Furthermore, the Ca(2+) influx was inhibited by 37.3% after the cells were preincubated with an L-type Ca(2+) channel blocker. In the Ca(2+)-free medium, the LPC-induced [Ca(2+)]i increase was completely blocked using an inositol triphosphate receptor (IP3R) inhibitor. However, a ryanodine receptor (RyR) inhibitor had no effect on the LPC-induced [Ca(2+)]i increase.
Significance: The LPC-induced [Ca(2+)]i increase in S2 cells was dependent on both the release of Ca(2+) stored in the endoplasmic reticulum and [Ca(2+)]e influx. Both L-type Ca(2+) channels and IP3R might be involved in this process. The LPC-induced [Ca(2+)]i increase in S2 cells characterized in this study may shed light on the study of NTE/SWS protein function in general because the enzyme is responsible for the deacylation of LPC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2015.02.014 | DOI Listing |
iScience
October 2024
Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
The failure to remyelinate demyelinated axons poses a significant challenge in the treatment of multiple sclerosis (MS), a chronic inflammatory demyelinating disease of the central nervous system. Here, we investigated the role of Hedgehog (Hh) signaling in myelin formation during development and under pathological conditions. Using conditional gain-of-function analyses, we found that hyperactivation of Hh signaling in oligodendrocyte precursor cells (OPCs) inhibits oligodendrocyte (OL) differentiation and myelination.
View Article and Find Full Text PDFData Brief
December 2024
4Brain, Department of Neurology, Ghent University, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
This article presents a comprehensive proteomics dataset from a lysolecithin (LPC)-induced demyelination model in the corpus callosum of female Lewis rats. The LPC model, widely used in preclinical studies of toxic demyelination, serves as a valuable tool for investigating processes of demyelination and remyelination, as well as for testing potential remyelination therapies for diseases like Multiple Sclerosis. In this study, rats received either Vagus Nerve Stimulation (VNS) or a sham treatment.
View Article and Find Full Text PDFJ Neuroinflammation
September 2024
Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders and Intelligent Control, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, China.
Demyelination occurs widely in the central nervous system (CNS) neurodegenerative diseases, especially the multiple sclerosis (MS), which with a complex and inflammatory lesion microenvironment inhibiting remyelination. Sirtuin6 (SIRT6), a histone/protein deacetylase is of interest for its promising effect in transcriptional regulation, cell cycling, inflammation, metabolism and longevity. Here we show that SIRT6 participates in the remyelination process in mice subjected to LPC-induced demyelination.
View Article and Find Full Text PDFInt J Mol Sci
August 2024
Xiangya School of Public Health, Central South University, Changsha 410013, China.
Neutrophil extracellular traps (NETs) are three-dimensional reticular structures that release chromatin and cellular contents extracellularly upon neutrophil activation. As a novel effector mechanism of neutrophils, NETs possess the capacity to amplify localized inflammation and have been demonstrated to contribute to the exacerbation of various inflammatory diseases, including cardiovascular diseases and tumors. It is suggested that lysophosphatidylcholine (LPC), as the primary active component of oxidized low-density lipoprotein, represents a significant risk factor for various inflammatory diseases, such as cardiovascular diseases and neurodegenerative diseases.
View Article and Find Full Text PDFCell Mol Life Sci
August 2024
Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.
Lysophosphatidylcholine (LPC) is a bioactive lipid present at high concentrations in inflamed and injured tissues where it contributes to the initiation and maintenance of pain. One of its important molecular effectors is the transient receptor potential canonical 5 (TRPC5), but the explicit mechanism of the activation is unknown. Using electrophysiology, mutagenesis and molecular dynamics simulations, we show that LPC-induced activation of TRPC5 is modulated by xanthine ligands and depolarizing voltage, and involves conserved residues within the lateral fenestration of the pore domain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!