Osteogenesis on nanoparticulate mineralized collagen scaffolds via autogenous activation of the canonical BMP receptor signaling pathway.

Biomaterials

Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA; Division of Plastic and Reconstructive Surgery, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA. Electronic address:

Published: May 2015

Skeletal regenerative medicine frequently incorporates deliverable growth factors to stimulate osteogenesis. However, the cost and side effects secondary to supraphysiologic dosages of growth factors warrant investigation of alternative methods of stimulating osteogenesis for clinical utilization. In this work, we describe growth factor independent osteogenic induction of human mesenchymal stem cells (hMSCs) on a novel nanoparticulate mineralized collagen glycosaminoglycan scaffold (MC-GAG). hMSCs demonstrated elevated osteogenic gene expression and mineralization on MC-GAG with minimal to no effect upon addition of BMP-2 when compared to non-mineralized scaffolds (Col-GAG). To investigate the intracellular pathways responsible for the increase in osteogenesis, we examined the canonical and non-canonical pathways downstream from BMP receptor activation. Constitutive Smad1/5 phosphorylation with nuclear translocation occurred on MC-GAG independent of BMP-2, whereas Smad1/5 phosphorylation depended on BMP-2 stimulation on Col-GAG. When non-canonical BMPR signaling molecules were examined, ERK1/2 phosphorylation was found to be decreased in MC-GAG but elevated in Col-GAG. No differences in Smad2/3 or p38 activation were detected. Collectively, these results demonstrated that MC-GAG scaffolds induce osteogenesis without exogenous BMP-2 addition via endogenous activation of the canonical BMP receptor signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4364277PMC
http://dx.doi.org/10.1016/j.biomaterials.2015.01.059DOI Listing

Publication Analysis

Top Keywords

bmp receptor
12
nanoparticulate mineralized
8
mineralized collagen
8
activation canonical
8
canonical bmp
8
receptor signaling
8
signaling pathway
8
growth factors
8
smad1/5 phosphorylation
8
osteogenesis
5

Similar Publications

Retinoic acid drives surface epithelium fate determination through the TCF7-MSX2 axis.

Cell Mol Life Sci

December 2024

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.

Understanding how embryonic progenitors decode extrinsic signals and transform into lineage-specific regulatory networks to drive cell fate specification is a fundamental, yet challenging question. Here, we develop a new model of surface epithelium (SE) differentiation induced by human embryonic stem cells (hESCs) using retinoic acid (RA), and identify BMP4 as an essential downstream signal in this process. We show that the retinoid X receptors, RXRA and RXRB, orchestrate SE commitment by shaping lineage-specific epigenetic and transcriptomic landscapes.

View Article and Find Full Text PDF

Pulmonary hypertension (PH) encompasses a group of conditions which ultimately lead to elevated pulmonary arterial pressure. PH is classified into five subgroups, of which Group 1 pulmonary arterial hypertension (PAH), is the most extensively studied. Numerous causal genes have been identified in PAH, most notably germline mutations in bone morphogenetic protein receptor type 2 () and the wider BMP pathway.

View Article and Find Full Text PDF

Excessive mechanical overloading of articular cartilage caused by excessive exercise or severe trauma is considered a critical trigger in the development of osteoarthritis (OA). However, the available clinical theranostic molecular targets and underlying mechanisms still require more elucidation. Here, we aimed to examine the possibility that bone morphogenetic proteins (BMPs) serve as molecular targets in rat cartilages and human chondrocytes under conditions of excessive mechanical overloading.

View Article and Find Full Text PDF

Collagen peptides alleviate estrogen deficiency-induced osteoporosis by enhancing osteoblast differentiation and mineralization.

J Sci Food Agric

December 2024

SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.

Background: Osteoporosis is a systemic skeletal disorder characterized by decreased bone mass and impaired bone microarchitecture because of an imbalance between bone resorption and formation. Existing pharmacological treatments often have significant side effects and mainly focus on inhibiting bone resorption. Other than inhibiting osteoclast-mediated bone resorption, the present study also investigates the potential role of sheepskin collagen peptide (SSCP) in bone formation by promoting osteoblast proliferation, differentiation and mineralization.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis, due in part to early invasion and metastasis, which in turn involves epithelial-mesenchymal transition (EMT) of the cancer cells. Prompted by the discovery that two PDAC cell lines of the quasi-mesenchymal subtype (PANC-1, MIA PaCa-2) exhibit neuroendocrine differentiation (NED), we asked whether NED is associated with EMT. Using real-time PCR and immunoblotting, we initially verified endogenous expressions of various NED markers, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!