Repair bond strength of resin composite to a novel CAD/CAM hybrid ceramic using different repair systems.

Dent Mater J

Department of Dental Biomaterials, Faculty of Dentistry, Mansoura University, PC 35516, Egypt; Department of Restorative Dental Sciences, Al-Farabi College of Dentistry and Nursing, Jeddah, Kingdom of Saudia Arabia.

Published: January 2017

This study evaluated the repair bond strength of a nanohybrid resin composite to a novel CAD/CAM hybrid ceramic based on four intraoral ceramic repair systems. Vita Enamic (VE) CAD/CAM hybrid ceramic was used in this study. Specimens were divided into five test groups according to the repair method performed on the ceramic surface: Gr C (No treatment; control); Gr CZ (Cimara Zircon); Gr PR (Porcelain Repair); Gr CR (Clearfil Repair); and Gr CS (CoJet system). Nanohybrid resin composite (GrandioSO) was packed onto treated ceramic surfaces for adhesion testing using microtensile bond strength test. Debonded specimens were examined with a stereomicroscope and SEM to determine the fracture mode. Data were analyzed using ANOVA and Tukey's HSD test. PR and CZ repair systems significantly enhanced the bond strength of nanohybrid resin composite to VE CAD/CAM hybrid ceramic when compared with the other tested repair systems.

Download full-text PDF

Source
http://dx.doi.org/10.4012/dmj.2014-159DOI Listing

Publication Analysis

Top Keywords

bond strength
16
resin composite
16
cad/cam hybrid
16
hybrid ceramic
16
repair systems
16
nanohybrid resin
12
repair
9
repair bond
8
composite novel
8
novel cad/cam
8

Similar Publications

Purpose: This study aimed to investigate the effect of chlorhexidine (CHX) cavity disinfectant on interfacial microleakage and micro-tensile bond strength (μTBS) of a universal adhesive bonded to dentin in both self-etch (SE) and etch-and-rinse (ER) modes.

Methods: Class I cavities were prepared in the coronal dentin of extracted human teeth and assigned to two etching modes (SE or ER), then subdivided by disinfection with or without CHX (n = 5). Cavities were restored using Single Bond Universal Adhesive and Filtek Z350 XT composite.

View Article and Find Full Text PDF

The treatment and resource utilization of municipal sludge and dredged silt have been rendered urgent by the acceleration of urbanization and stricter environmental protection demands. An effective solution was developed to address the challenges of poor mechanical properties and the difficulty in directly using cement-based materials for municipal sludge treatment. The utilization of dredged silt with high water content served as the foundational skeleton material.

View Article and Find Full Text PDF

Gel electrolytes have emerged as a promising solution for enhancing the performance of zinc-ion batteries (ZIBs), particularly in flexible devices. However, they face challenges such as low-temperature inefficiency, constrained ionic conductivity, and poor mechanical strength. To address these issues, this study presents a novel PAMCD gel electrolyte with tunable freezing point and mechanical properties for ZIBs, blending the high ionic conductivity of polyacrylamide with the anion interaction capability of β-cyclodextrin.

View Article and Find Full Text PDF

The Ti6Al4V alloy is widely recognized for its extensive industrial applications, particularly in the aeronautics sector, due to its exceptional strength to-weight ratio and corrosion resistance. In this context, many industrial processes depend critically on surface area, topology, and roughness. A promising approach involves combining Ti6Al4V alloy with polymer composites, which offers significant potential for engineers to design parts that are not only high-performing but also environmentally friendly.

View Article and Find Full Text PDF

Hydrogen Bond Blueshifts in Nitrile Vibrational Spectra Are Dictated by Hydrogen Bond Geometry and Dynamics.

JACS Au

December 2024

Freie Universität Berlin, Physics Department, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany.

Vibrational Stark effect (VSE) spectroscopy has become one of the most important experimental approaches to determine the strength of noncovalent, electrostatic interactions in chemistry and biology and to quantify their influence on structure and reactivity. Nitriles (C≡N) have been widely used as VSE probes, but their application has been complicated by an anomalous hydrogen bond (HB) blueshift which is not encompassed within the VSE framework. We present an empirical model describing the anomalous HB blueshift in terms of H-bonding geometry, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!