AI Article Synopsis

  • The study highlights the issues caused by bacterial backbones in typical eukaryotic expression plasmids, such as immune responses in mammals and reduced transgene expression.
  • Researchers developed a new minicircle DNA vector that contains an enhanced green fluorescent protein (EGFP) gene, created using specific recombination techniques which remove the bacterial backbone.
  • The minicircle DNA showed effective, transient expression of EGFP in CHO-K1 and HEK cells without integrating into the host genome, indicating its potential for future use in eukaryotic DNA transfection.

Article Abstract

The presence of a bacterial backbone in conventional eukaryotic expression plasmids may cause undesirable effects by triggering the immune responses in mammals and repression of episomal transgene expression. To avoid these problems, researchers have proposed the use of minicircle DNAs which are episomal vectors that have lost their bacterial backbone using a site-specific recombinase mediated recombination. In the present study, we have constructed a new minicircle DNA vector that carries an enhanced green florescent protein (EGFP) reporter gene using phage ΦC31 integrase-mediated recombination and homing endonuclease ISceI-mediated purification in E. coli. ΦC31 integrase expression was under the control of the araBAD promoter, whereas ISceI endonuclease was controlled by the tac promoter. This vector was transfected into CHO-K1 cells, which showed transient expression of EGFP up to 14 generations. Similar results were obtained upon transient transfection into HEK cells. In addition, PCR results on genomic DNA, demonstrated the EGFP-minicircle was episomal and did not integrate into the host genome. Our constructed parental plasmid expresses EGFP and could be used for the generation of episomal minicircle DNA with intent to carry out transient transfection of interested DNA fragments into the eukaryotic cells for various purposes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-015-3864-zDOI Listing

Publication Analysis

Top Keywords

minicircle dna
12
enhanced green
8
green florescent
8
florescent protein
8
reporter gene
8
bacterial backbone
8
transient transfection
8
dna
5
expression
5
construction minicircle
4

Similar Publications

Extracellular vesicles (EVs) are gaining recognition as promising therapeutic carriers for immune modulation. We investigated the potential of EVs derived from HEK293FT cells to stabilize and deliver interleukin-10 (IL-10), a key anti-inflammatory cytokine. Using minicircle (MC) DNA vectors, we achieved IL-10 overexpression and efficient incorporation into EVs, yielding superior stability compared to free, recombinant IL-10 protein.

View Article and Find Full Text PDF

Mitochondrial DNA Structure in .

Pathogens

January 2025

Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.

Kinetoplastids display a single, large mitochondrion per cell, with their mitochondrial DNA referred to as the kinetoplast. This kinetoplast is a network of concatenated circular molecules comprising a maxicircle (20-64 kb) and up to thousands of minicircles varying in size depending on the species (0.5-10 kb).

View Article and Find Full Text PDF

Macrophage-specific in vivo RNA editing promotes phagocytosis and antitumor immunity in mice.

Sci Transl Med

January 2025

College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China.

Macrophages play a central role in antitumor immunity, making them an attractive target for gene therapy strategies. However, macrophages are difficult to transfect because of nucleic acid sensors that can trigger the degradation of foreign plasmid DNA. Here, we developed a macrophage-specific editing (MAGE) system by which compact plasmid DNA encoding a CasRx editor can be delivered to macrophages by a poly(β-amino ester) (PBAE) carrier to bypass the DNA sensor and enable RNA editing in vitro and in vivo.

View Article and Find Full Text PDF

Integrating Circle-Seq with transcriptomics reveals genome-wide characterization of extrachromosomal circular DNA for dilated cardiomyopathy.

Biol Direct

November 2024

Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.

Article Synopsis
  • The study focused on extrachromosomal circular DNAs (eccDNAs) in human heart failure, particularly due to dilated cardiomyopathy (DCM), revealing their significance in heart disease.
  • Researchers used advanced methods like Circle-Seq and RNA-Seq to identify and analyze eccDNAs in heart tissues from DCM patients compared to healthy controls.
  • Findings showed that eccDNAs are derived from all chromosomes, often contain genes or gene fragments, and can influence gene expression in heart cells, potentially impacting the progression of heart failure.
View Article and Find Full Text PDF

Detection of DNA of Leishmania infantum in the brains of dogs without neurological signs in an endemic region for leishmaniasis in the state of Rio Grande do Sul, Brazil.

Parasitol Res

November 2024

Laboratório de Doenças Parasitárias (LADOPAR), Programa de Pós-Graduação Em Medicina Veterinária, Universidade Federal de Santa Maria, Santa Maria, Rio Grande Do Sul, Brasil.

Article Synopsis
  • * A study examined 200 dogs in Rio Grande do Sul, Brazil, for the presence of Leishmania spp., using PCR techniques; 26.5% tested positive, all for L. infantum, with an average age of 5.08 years among the infected.
  • * Clinical signs in infected dogs varied, with some showing symptoms like hepatomegaly and anemia; notable pathological findings included evidence of distemper and meningitis in certain cases.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!