An ultra-low Pd loading nanocatalyst is synthesized by a convenient solution route of photochemical reduction and aqueous chemical growth. The modification of nanocatalyst structures is investigated through changing morphologies of Pd nanoclusters on the surface of ZnO nanorods. A significant enhancement in photocatalytic properties has been achieved by decorating a trace amount of Pd clusters (0.05 at%) on the surface of ZnO nanorods. The reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) is applied to demonstrate multiple catalytic activities in the Pd-ZnO hybrid nanocatalyst, which also provides a better understanding of the relationship between the unique nanoconfigured structure and catalytic performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5nr00599j | DOI Listing |
Small
January 2025
Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, China.
Single-atom materials provide a platform to precisely regulate the electrochemical redox behavior of electrode materials with atomic level. Here, a multifield-regulated sintering route is reported to rapidly prepare single-atom zinc with a very high loading mass of 24.7 wt.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China; Suzhou Research Institute of Shandong University, Suzhou, Jiangsu 215123, China. Electronic address:
Camptothecin (CPT) exhibits potent anticancer activity, but its clinical application is limited by poor solubility and severe side effects. Hyaluronic acid (HA) is gaining attention in drug delivery systems due to its excellent biocompatibility and tumor-targeting properties. In this study, we conjugated CPT to the reducing end of ultra-low molecular weight HA to create a series of HA-decorated CPT conjugates.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University; Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China. Electronic address:
Capillary zone electrophoresis (CZE) is gaining attention in the field of single-cell proteomics for its ultra-low-flow and high-resolution separation abilities. Even more sample-limited yet rich in biological information are phosphoproteomics experiments, as the phosphoproteome composes only a fraction of the whole cellular proteome. Rapid analysis, high sensitivity, and maximization of sample utilization are paramount for single-cell analysis.
View Article and Find Full Text PDFEnviron Res
December 2024
College of Materials and Environmental Engineering, Hangzhou Dianzi University, Xiasha University Park, Hangzhou, Zhejiang, 310018, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!