Purpose: To quantitatively investigate the effect of range shifter materials on single-spot characteristics of a proton pencil beam.
Methods: An analytic approximation for multiple Coulomb scattering ("differential Moliere" formula) was adopted to calculate spot sizes of proton spot scanning beams impinging on a range shifter. The calculations cover a range of delivery parameters: six range shifter materials (acrylonitrile butadiene styrene, Lexan, Lucite, polyethylene, polystyrene, and wax) and water as reference material, proton beam energies ranging from 75 to 200 MeV, range shifter thicknesses of 4.5 and 7.0 g/cm(2), and range shifter positions from 5 to 50 cm. The analytic method was validated by comparing calculation results with the measurements reported in the literature.
Results: Relative to a water-equivalent reference, the spot size distal to a wax or polyethylene range shifter is 15% smaller, while the spot size distal to a range shifter made of Lexan or Lucite is about 6% smaller. The relative spot size variations are nearly independent of beam energy and range shifter thickness and decrease with smaller air gaps.
Conclusions: Among the six material investigated, wax and polyethylene are desirable range shifter materials when the spot size is kept small. Lexan and Lucite are the desirable range shifter materials when the scattering power is kept similar to water.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148134 | PMC |
http://dx.doi.org/10.1118/1.4908208 | DOI Listing |
Micromachines (Basel)
November 2024
Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia.
In robotic arm controllers, the ability to shift signal levels is crucial for interfacing between different voltage domains in a processor. The level shifter (LS) has been used to convert signals operating near threshold voltage to signals operating well above the threshold voltage. Researchers have developed current mirror-based LSs to employ current mirrors, which duplicate the current from one transistor and accurately replicate it in another, ensuring precise current matching.
View Article and Find Full Text PDFFront Oncol
November 2024
Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States.
Background: This manuscript describes modifications to a pencil beam scanning (PBS) proton gantry that enables ultra-high dose rates (UHDR) irradiation, including treatment planning and validation.
Methods: Beamline modifications consisted of opening the energy slits and setting the degrader to pass-through mode to maximize the dose rate. A range shifter was inserted upstream from the isocenter to enlarge the spot size and make it rotationally symmetric.
Sci Rep
December 2024
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
The growing interest in reconfigurable intelligent surfaces (RIS) for wireless communications is evident, particularly in addressing challenges beyond the normal incidence condition of electromagnetic waves. This paper introduces an innovative approach to achieve beam steering in reflecting-type array structures, specifically reflectarrays, through the use of Reconfigurable Electro-Mechanical Reflectarray (REMR) technology. The REMR structure, equipped with a cam-shaped actuator beneath each unit cell's ground plane, serves as the basis for this design.
View Article and Find Full Text PDFJ Appl Clin Med Phys
November 2024
Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Key Laboratory of Radiation Oncology, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.
Purpose: To commission the RayStation (RS) TPS (treatment planning system) for scanned CIRT (carbon-ion radiotherapy) utilizing pencil beam algorithms (PBv4.2).
Methods: The beam model commissioning entailed employing 1D single beams and 2D monoenergetic fields to validate spot profiles with films, assess beam range using Peakfinder measurements, and evaluate fragment spectra through dose-averaged linear energy transfer (LETd) calculations.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!