A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Glucose- and pH-responsive nanogated ensemble based on polymeric network capped mesoporous silica. | LitMetric

Glucose- and pH-responsive nanogated ensemble based on polymeric network capped mesoporous silica.

ACS Appl Mater Interfaces

†Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, People's Republic of China.

Published: March 2015

In this paper, a glucose and pH-responsive release system based on polymeric network capped mesoporous silica nanoparticles (MSN) has been presented. The poly(acrylic acid) (PAA) brush on MSN was obtained through the surface-initiated atom transfer radical polymerization (SI-ATRP) of t-butyl acrylate and the subsequent hydrolysis of the ester bond. Then the PAA was glycosylated with glucosamine to obtain P(AA-AGA). To block the pore of silica, the P(AA-AGA) chains were cross-linked through the formation of boronate esters between 4,4-(ethylenedicarbamoyl)phenylboronic acid (EPBA) and the hydroxyl groups of P(AA-AGA). The boronate esters disassociated in the presence of glucose or in acidic conditions, which lead to opening of the mesoporous channels and the release of loaded guest molecules. The rate of release could be tuned by varying the pH or the concentration of glucose in the environment. The combination of two stimuli exhibited an obvious enhanced release capacity in mild acidic conditions (pH 6.0).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b00631DOI Listing

Publication Analysis

Top Keywords

based polymeric
8
polymeric network
8
network capped
8
capped mesoporous
8
mesoporous silica
8
boronate esters
8
acidic conditions
8
glucose- ph-responsive
4
ph-responsive nanogated
4
nanogated ensemble
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!