Purpose: To perform a radiogenomic analysis of women with breast cancer to study the multiscale relationships among quantitative computer vision-extracted dynamic contrast material-enhanced (DCE) magnetic resonance (MR) imaging phenotypes, early metastasis, and long noncoding RNA (lncRNA) expression determined by means of high-resolution next-generation RNA sequencing.
Materials And Methods: In this institutional review board-approved study, an automated image analysis platform extracted 47 computational quantitative features from DCE MR imaging data in a training set (n = 19) to screen for MR imaging biomarkers indicative of poor metastasis-free survival (MFS). The lncRNA molecular landscape of the candidate feature was defined by using an RNA sequencing-specific negative binomial distribution differential expression analysis. Then, this radiogenomic biomarker was applied prospectively to a validation set (n = 42) to allow prediction of MFS and lncRNA expression by using quantitative polymerase chain reaction analysis.
Results: The quantitative MR imaging feature, enhancing rim fraction score, was predictive of MFS in the training set (P = .007). RNA sequencing analysis yielded an average of 55.7 × 10(6) reads per sample and identified 14 880 lncRNAs from a background of 189 883 transcripts per sample. Radiogenomic analysis allowed identification of three previously uncharacterized and five named lncRNAs significantly associated with high enhancing rim fraction, including Homeobox transcript antisense intergenic RNA (HOTAIR) (P < .05), a known predictor of poor MFS in patients with breast cancer. Independent validation confirmed the association of the enhancing rim fraction phenotype with both MFS (P = .002) and expression of four of the top five differentially expressed lncRNAs (P < .05), including HOTAIR.
Conclusion: The enhancing rim fraction score, a quantitative DCE MR imaging lncRNA radiogenomic biomarker, is associated with early metastasis and expression of the known predictor of metastatic progression, HOTAIR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1148/radiol.15142698 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!