Two-dimensional (2D) heteronanosheets are currently the focus of intense study due to the unique properties that emerge from the interplay between two low-dimensional nanomaterials with different properties. However, the properties and new phenomena based on the two 2D heteronanosheets interacting in a 3D hierarchical architecture have yet to be explored. Here, we unveil the surface redox charge storage mechanism of surface-exposed WS2 nanosheets assembled in a 3D hierarchical heterostructure using in situ synchrotron X-ray absorption and Raman spectroscopic methods. The surface dominating redox charge storage of WS2 is manifested in a highly reversible and ultrafast capacitive fashion due to the interaction of heteronanosheets and the 3D connectivity of the hierarchical structure. In contrast, compositionally identical 2D WS2 structures fail to provide a fast and high capacitance with different modes of lattice vibration. The distinctive surface capacitive behavior of 3D hierarchically structured heteronanosheets is associated with rapid proton accommodation into the in-plane W-S lattice (with the softening of the E2g bands), the reversible redox transition of the surface-exposed intralayers residing in the electrochemically active 1T phase of WS2 (with the reversible change in the interatomic distance and peak intensity of W-W bonds), and the change in the oxidation state during the proton insertion/deinsertion process. This proposed mechanism agrees with the dramatic improvement in the capacitive performance of the two heteronanosheets coupled in the hierarchical structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl504200y | DOI Listing |
ChemSusChem
January 2025
Washington State University, School of Mechanical and Materials Engineering, PO Box 642920, 99164-2920, Pullman, UNITED STATES OF AMERICA.
Advancement of sulfur (S) cathode of lithium-sulfur (Li-S) batteries is hindered by issues such as insulating nature of sulfur, sluggish redox kinetics, polysulfide dissolution and shuttling. To address these issues, we initiate a study on applying an important amino acid of protein, arginine (Arg), as a functional additive into S cathodes. Based on our simulation study, the positively charged Arg facilitates strong interactions with polysulfides.
View Article and Find Full Text PDFDalton Trans
January 2025
Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China.
Incorporating non-electrochemically active elements (such as Zn and Mg) into the framework of active components can enhance structural stability, leading to improved cycling performance. However, limited research has been conducted on the impact of varying doping concentrations. In this study, we conducted a comprehensive analysis of how different levels of Mg doping in Co(OH) affect the supercapacitor performance.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Chemistry Department, Southern Methodist University, Dallas, Texas, USA.
Using the QM/MM methodology and a local mode analysis, we investigated a character and a strength of FeS bonds of heme groups in oxidized and reduced forms of Bacterioferritin from Azotobacter vinelandii. The strength of the FeS bonds was correlated with a bond length, an energy density at a bond critical point, and a charge difference of the F and S atoms. Changing the oxidation state from ferrous to ferric generally makes the FeS bonds weaker, longer, more covalent, and more polar.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Griffith University, Griffith School of Environment, Centre for Clean Environment and Energy, 4222, Brisbane, AUSTRALIA.
Converting biomass-derived molecules like 5-hydroxymethylfurfural (HMF) into value-added products alongside hydrogen production using renewable energy offers significant opportunities for sustainable chemical and energy production. Yet, HMF electrooxidation requires strong alkaline conditions and membranes for efficient conversion. These harsh conditions destabilize HMF, leading to humin formation and reduced product purity, meanwhile membranes increase costs.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
The utilization of redox mediators (RMs) in lithium-oxygen batteries (LOBs) has underscored their utility in high overpotential during the charging process. Among the currently known RMs, it is exceptionally challenging to identify those with a redox potential capable of attenuating singlet oxygen (O) generation while resisting degradation by reactive oxygen species (ROS), such as O and superoxide (O ). In this context, computational and experimental approaches for rational molecular design have led to the development of 7,7'-bi-7-azabicyclo[2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!