Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pyrazole-3-one compounds were designed on the basis of docking studies of previously reported antidiabetic pyrazole compounds. The amino acid residues found during docking studies were used as guidelines for the modification of aromatic substitutions on pyrazole-3-one structure. Depending on the docking score, the designed compounds were selectively prioritized for synthesis. The synthesized compounds were subjected to in vivo hypoglycemic activity using alloxan induced diabetic rats and metformin as a standard. Compound 4 having sulphonamide derivative was found to be the most potent compound among the series.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4334925 | PMC |
http://dx.doi.org/10.1155/2015/670181 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!