Hematopoietic stem and progenitor cell harvesting: technical advances and clinical utility.

J Blood Med

Etablissement Français du Sang Rhône Alpes, Apheresis Unit, Centre Hospitalier Lyon Sud France, Lyon, France ; Cell Therapy Unit, Etablissement Français du Sang (EFS) Rhône-Alpes, Hospital Edouard Herriot, Lyon, France.

Published: March 2015

Hematopoietic stem and progenitor cell (HSPC) transplantations require prior harvesting of allogeneic or autologous HSPCs. HSPCs are usually present in bone marrow (BM) during the entire life, in cord blood (CB) at birth, or in peripheral blood (PB) under particular circumstances. HSPCs were first harvested in BM and later in CB and PB, as studies showed interesting features of such grafts. All harvesting methods were in use throughout the years, except BM harvesting for HSPC autologous transplantation, which was replaced by PB harvesting. BM, CB, and PB harvesting methods have been developed, and materials and devices technically improved to increase the number of HSPCs harvested. In parallel, knowing the features of the donors or patients associated with successful numbers of HSPCs allows the adaptation of appropriate harvesting methods. Moreover, it is important to ensure the safety of donors or patients while harvesting. This review describes the methods used for harvesting based on recent studies or developments around these methods, and more particularly, the means developed to increase the numbers of HSPCs harvested in each method. It also explains briefly the influence of technical improvements in HSPC harvesting on potential changes in HSPC graft composition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4340371PMC
http://dx.doi.org/10.2147/JBM.S52783DOI Listing

Publication Analysis

Top Keywords

hspcs harvested
12
harvesting methods
12
harvesting
10
hematopoietic stem
8
stem progenitor
8
progenitor cell
8
methods developed
8
donors patients
8
numbers hspcs
8
hspcs
6

Similar Publications

Background: Acute radiation syndrome (ARS) manifests after exposure to high doses of radiation in the instances of radiologic accidents or incidents. Facilitating regeneration of the bone marrow (BM), namely the hematopoietic stem and progenitor cells (HSPCs), is key in mitigating ARS and multi-organ failure. JNJ-26366821, a PEGylated thrombopoietin mimetic (TPOm) peptide, has been shown as an effective medical countermeasure (MCM) to treat hematopoietic-ARS (H-ARS) in mice.

View Article and Find Full Text PDF

Background: Acute radiation syndrome (ARS) manifests after exposure to high doses of radiation in the instances of radiologic accidents or incidents. Facilitating the regeneration of the bone marrow (BM), namely the hematopoietic stem and progenitor cells (HSPCs), is a key in mitigating ARS and multi-organ failure. JNJ-26366821, a PEGylated thrombopoietin mimetic (TPOm) peptide, has been shown as an effective medical countermeasure (MCM) to treat hematopoietic-ARS (H-ARS) in mice.

View Article and Find Full Text PDF

Background: Mesenchymal stem/stromal cells (MSCs) are of great therapeutic value due to their role in maintaining the function of hematopoietic stem/progenitor cells (HSPCs). MSCs derived from human pluripotent stem cells represent an ideal alternative because of their unlimited supply. However, the role of MSCs with neural crest origin derived from HPSCs on the maintenance of HSPCs has not been reported.

View Article and Find Full Text PDF

In Vivo Osteo-organoid Approach for Harvesting Therapeutic Hematopoietic Stem/Progenitor Cells.

J Vis Exp

February 2024

Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology; Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology; Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology;

Hematopoietic stem cell transplantation (HSCT) requires a sufficient number of therapeutic hematopoietic stem/progenitor cells (HSPCs). To identify an adequate source of HSPCs, we developed an in vivo osteo-organoid by implanting scaffolds loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) into an internal muscle pouch near the femur in mice. After 12 weeks of implantation, we retrieved the in vivo osteo-organoids and conducted flow cytometry analysis on HPSCs, revealing a significant presence of HSPC subsets within the in vivo osteo-organoids.

View Article and Find Full Text PDF

Background: The diarylheptanoid ASPP 049 has improved the quality of adult hematopoietic stem cell (HSC) expansion ex vivo through long-term reconstitution in animal models. However, its effect on hematopoietic regeneration from human induced pluripotent stem cells (hiPSCs) is unknown.

Method: We utilized a defined cocktail of cytokines without serum or feeder followed by the supplementation of ASPP 049 to produce hematopoietic stem/progenitor cells (HSPCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!