In beating hearts, phosphorylation of myosin regulatory light chain (RLC) at a single site to 0.45 mol of phosphate/mol by cardiac myosin light chain kinase (cMLCK) increases Ca(2+) sensitivity of myofilament contraction necessary for normal cardiac performance. Reduction of RLC phosphorylation in conditional cMLCK knock-out mice caused cardiac dilation and loss of cardiac performance by 1 week, as shown by increased left ventricular internal diameter at end-diastole and decreased fractional shortening. Decreased RLC phosphorylation by conventional or conditional cMLCK gene ablation did not affect troponin-I or myosin-binding protein-C phosphorylation in vivo. The extent of RLC phosphorylation was not changed by prolonged infusion of dobutamine or treatment with a β-adrenergic antagonist, suggesting that RLC is constitutively phosphorylated to maintain cardiac performance. Biochemical studies with myofilaments showed that RLC phosphorylation up to 90% was a random process. RLC is slowly dephosphorylated in both noncontracting hearts and isolated cardiac myocytes from adult mice. Electrically paced ventricular trabeculae restored RLC phosphorylation, which was increased to 0.91 mol of phosphate/mol of RLC with inhibition of myosin light chain phosphatase (MLCP). The two RLCs in each myosin appear to be readily available for phosphorylation by a soluble cMLCK, but MLCP activity limits the amount of constitutive RLC phosphorylation. MLCP with its regulatory subunit MYPT2 bound tightly to myofilaments was constitutively phosphorylated in beating hearts at a site that inhibits MLCP activity. Thus, the constitutive RLC phosphorylation is limited physiologically by low cMLCK activity in balance with low MLCP activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409237PMC
http://dx.doi.org/10.1074/jbc.M115.642165DOI Listing

Publication Analysis

Top Keywords

rlc phosphorylation
28
light chain
16
cardiac performance
12
mlcp activity
12
rlc
11
phosphorylation
10
cardiac myosin
8
myosin regulatory
8
regulatory light
8
beating hearts
8

Similar Publications

Background: Impaired left ventricular relaxation, high filling pressures, and dysregulation of Ca homeostasis are common findings contributing to diastolic dysfunction in hypertrophic cardiomyopathy (HCM). Studies have shown that impaired relaxation is an early observation in the sarcomere-gene-positive preclinical HCM cohort, which suggests the potential involvement of myofilament regulators in relaxation. A molecular-level understanding of mechanism(s) at the level of the myofilament is lacking.

View Article and Find Full Text PDF

Precise regulation of sarcomeric contraction is essential for normal cardiac function. The heart must generate sufficient force to pump blood throughout the body, but either inadequate or excessive force can lead to dysregulation and disease. Myosin regulatory light chain (RLC) is a thick-filament protein that binds to the neck of the myosin heavy chain.

View Article and Find Full Text PDF

Impact and mechanisms of drag-reducing polymers on shear stress regulation in pulmonary hypertension.

Clin Hemorheol Microcirc

October 2024

Department of Cardiology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China.

Background: Pulmonary hypertension (PH) is a refractory disease characterized by elevated pulmonary artery pressure and resistance. Drag-reducing polymers (DRPs) are blood-soluble macromolecules that reduce vascular resistance by altering the blood dynamics and rheology. Our previous work indicated that polyethylene oxide (PEO) can significantly reduce the medial wall thickness and vascular resistance of the pulmonary arteries, but the specific mechanism is still unclear.

View Article and Find Full Text PDF

We investigated the impact of the phosphomimetic (Ser15 → Asp15) myosin regulatory light chain (S15D-RLC) on the Super-Relaxed (SRX) state of myosin using previously characterized transgenic (Tg) S15D-D166V rescue mice, comparing them to the Hypertrophic Cardiomyopathy (HCM) Tg-D166V model and wild-type (WT) RLC mice. In the Tg-D166V model, we observed a disruption of the SRX state, resulting in a transition from SRX to DRX (Disordered Relaxed) state, which explains the hypercontractility of D166V-mutated myosin motors. The presence of the S15D moiety in Tg-S15D-D166V mice restored the SRX/DRX balance to levels comparable to Tg-WT, thus mitigating the hypercontractile behavior associated with the HCM-D166V mutation.

View Article and Find Full Text PDF

Characterisation of the myosin light chain kinase (MLCK) gene of Locusta migratoria and the encoded MLCK.

Insect Mol Biol

August 2024

State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Myosin light chain kinase (MLCK) is a dedicated kinase of myosin regulatory light chain (RLC), playing an essential role in the regulation of muscle contraction and cell motility. Much of the knowledge about MLCK comes from the study of vertebrate MLCK, and little is known about insect MLCK. Here, we identified the single MLCK gene in the locust Locusta migratoria, which spans over 1400 kb, includes 62 exons and accounts for at least five transcripts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!