Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
MicroRNAs (miRNAs) are a class of small non-coding RNAs of 20-25 nucleotides in length. It has been shown that miRNAs play important roles in the proliferation of many types of cells, including myoblasts. In this study, we used real-time quantitative polymerase chain reaction, western blotting, EdU, flow cytometry, and CCK-8 assay to explore the role of miR-125a-5p during the proliferation of C2C12 myoblasts. It was found that the expression of miR-125a-5p was decreased during C2C12 myoblast proliferation. Over-expression of miR-125a-5p inhibited C2C12 myoblast proliferation as indicated by EdU staining, flow cytometry, and CCK8 assay. It was also found that miR-125a-5p could negatively regulate E2F3 expression at posttranscriptional level, via a specific target site in the 3' untranslated region. Knockdown of E2F3 showed a similar inhibitory effect on C2C12 myoblast proliferation. Thus, our findings suggest that miR-125a-5p may act as a negative regulator of C2C12 myoblast proliferation by targeting E2F3.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/abbs/gmv006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!