Angiotensin II (Ang II) is a major determinant of vascular remodeling in the cerebral circulation during chronic hypertension, which is an important risk factor for stroke. We examined the molecular mechanism of Ang II-mediated cerebrovascular remodeling that involves the epidermal growth factor receptor (EGFR) pathway. Mutant EGFR mice (waved-2), their heterozygous control (wild-type [WT]), and C57BL/6J mice were infused with Ang II (1000 ng kg(-1) min(-1)) or saline via osmotic minipumps for 28 days (n=8 per group). Eight of the Ang II-infused C57BL/6J mice were cotreated with AG1478 (12 mg/kg per day, IP), a specific EGFR tyrosine kinase inhibitor. Systolic arterial pressure was measured by a tail-cuff method. Pressure and diameter of cerebral arterioles were measured through an open cranial window in anesthetized mice. Cross-sectional area of the wall was determined in pressurized fixed cerebral arterioles. Expression of phosphorylated EGFR (p-EGFR), caveolin-1 (Cav-1), and c-Src was determined by western blotting and immunohistochemistry. Mutation of EGFR or AG1478 treatment did not affect Ang II-induced hypertension. Ang II increased the expression of p-EGFR in WT mice, confirming the activation of EGFR. Ang II induced hypertrophy and inward remodeling of cerebral arterioles in WT mice. Hypertrophy, but not remodeling, was prevented in waved-2 and AG1478-treated C57BL/6J mice. Ang II increased p-EGFR, Cav-1, and c-Src expression in WT but not in waved-2 or AG1478-treated C57BL/6J mice. These results suggest that Ang II-induced hypertrophy in cerebral arterioles involves EGFR-dependent signaling and may include Cav-1 and nonreceptor tyrosine kinase c-Src. This signaling pathway seems to be limited to Ang II-induced hypertrophy, but not inward remodeling, and is independent of blood pressure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/HYPERTENSIONAHA.114.04794 | DOI Listing |
Antioxidants (Basel)
January 2025
Laboratory of Molecular Cardiology, Department of Cardiology 1, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany.
Noise pollution is a known health risk factor and evidence for cardiovascular diseases associated with traffic noise is growing. At least 20% of the European Union's population lives in noise-polluted areas with exposure levels exceeding the recommended limits of the World Health Organization, which is considered unhealthy by the European Environment Agency. This results in the annual loss of 1.
View Article and Find Full Text PDFTrends Neurosci
January 2025
Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA. Electronic address:
Despite extensive functional mapping studies using rodent functional magnetic resonance imaging (fMRI), interpreting the fMRI signals in relation to their neuronal origins remains challenging due to the hemodynamic nature of the response. Ultra high-resolution rodent fMRI, beyond merely enhancing spatial specificity, has revealed vessel-specific hemodynamic responses, highlighting the distinct contributions of intracortical arterioles and venules to fMRI signals. This 'single-vessel' fMRI approach shifts the paradigm of rodent fMRI, enabling its integration with other neuroimaging modalities to investigate neuro-glio-vascular (NGV) signaling underlying a variety of brain dynamics.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Deptrtment of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
Aim: Tissue clearance is a rapidly evolving technology that allows for the three-dimensional imaging of intact biological tissues. Preexisting tissue-clearing techniques, such as Passive Clarity Technique (PACT) and Clear Unobstructed Brain Imaging Cocktails and Computational Analysis (CUBIC), clear tissues adequately but have distinct disadvantages, such as taking extensive time to clear tissues and degradation of endogenous tissue fluorescence. We developed a new tissue-clearing technique combining PACT and CUBIC protocols to map the neural lineages expressing the transient receptor potential vanilloid type 1 (TRPV1) receptor.
View Article and Find Full Text PDFMicrocirculation
January 2025
Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.
Objective: Cerebral blood flow (CBF) decline is increasingly recognized as an area of importance for targeting neurodegenerative disorders, yet full understanding of the mechanisms that underlie CBF changes are lacking. Animal models are crucial for expanding our knowledge as methods for studying global CBF and neurovascular coupling in humans are limited and require expensive specialized scanners.
Methods: Use of appropriate animal models can increase our understanding of cerebrovascular function, so we have combined chronic cranial windows with in vivo two-photon and laser speckle microscopy and ex vivo capillary-parenchymal arteriole (CaPA) preparations.
Int J Mol Sci
December 2024
Dipartimento di Biotecnologie e Scienze della Vita, ASST Sette Laghi, Università degli Studi dell'Insubria, 21100 Varese, Italy.
Hypertension exerts a profound impact on the microcirculation, causing both structural and functional alterations that contribute to systemic and organ-specific vascular damage. The microcirculation, comprising arterioles, capillaries, and venules with diameters smaller than 20 μm, plays a fundamental role in oxygen delivery, nutrient exchange, and maintaining tissue homeostasis. In the context of hypertension, microvascular remodeling and rarefaction result in reduced vessel density and elasticity, increasing vascular resistance and driving end-organ damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!