Distinct kinetics of molecular gelation in a confined space and its relation to the structure and property of thin gel films.

Phys Chem Chem Phys

Key Laboratory of Cluster Science of Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, China 100081.

Published: March 2015

Thin films of molecular gels formed in a confined space have potential applications in transdermal delivery, artificial skin, molecular electronics, etc. The microstructures and properties of thin gel films can be significantly different from those of their bulk counterparts. However, so far a comprehensive understanding of the effects of spatial confinement on the molecular gelation kinetics, fiber network structure and related mechanical properties is still lacking. In this work, using rheological techniques, we investigated the effect of one-dimensional confinement on the formation kinetics of fiber networks in the molecular gelation process. Fractal analyses of the kinetic information in terms of an extended Dickinson model enabled us to describe quantitatively the distinct kinetic signature of molecular gelation. The structural features derived from gelation kinetics support well the fractal patterns of the fiber networks acquired by optical and electron microscopy. With the kinetics-structure correlation, we can gain an in-depth understanding of the confinement-induced differences in the structure and consequently the mechanical properties of a model molecular gelling system. Particularly, the confinement induced structural transition, from a three-dimensional, dense and compact spherulitic network composed of highly branched fibers to a quasi-two-dimensional sparse spherulitic network composed of less branched fibers and entangled fibrils at the boundary areas, renders a gel film to become less stiff but more ductile. Our study suggests here a new strategy of engineering the fiber network microstructure to achieve functional gel films with unusual but useful properties.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cp05715eDOI Listing

Publication Analysis

Top Keywords

molecular gelation
16
gel films
12
confined space
8
thin gel
8
gelation kinetics
8
kinetics fiber
8
fiber network
8
mechanical properties
8
fiber networks
8
spherulitic network
8

Similar Publications

Effect of ultrasound synergistic pH shift modification treatment on Hericium erinaceus protein structure and its application in 3D printing.

Int J Biol Macromol

January 2025

School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China; Xi' an Key Laboratory of Precision Nutrition and Functional Product Innovation, Shaanxi University of Science and Technology, Xi'an 710021, China. Electronic address:

This study investigates the effects of ultrasound synergistic pH shift modification on the structural and functional properties of Hericium erinaceus (HE) proteins. The modification resulted in significant changes in the molecular structure of HE proteins, including increased solubility (49.69 % at pH 1.

View Article and Find Full Text PDF

The prediction of gelation is an important target, yet current models do not predict any post-gel properties. Gels can be formed through the self-assembly of many molecules, but close analogs often do not form gels. There has been success using a number of computational approaches to understand and predict gelation from molecular structures.

View Article and Find Full Text PDF

Two-Component Hydrogels Built from Chinese Herbal Medicine-Derived Glycyrrhizic Acid and Puerarin: Assembly Mechanism, Self-Healing Properties, and Selective Antibacterial Activity.

ACS Appl Mater Interfaces

January 2025

Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, P.R.China.

Chinese herbal medicine has offered a great treasure for discovering intrinsically bioactive low molecular weight gelators (LMWGs). Herein, the two-component hydrogels comprising glycyrrhizic acid (GA) and puerarin (PUE), the primary bioactive components, respectively, from herbs and are successfully prepared. Combined spectroscopic characterizations reveal that hydrogen bonds are formed between GA and PUE molecules, which further drives the growth of nanofiber assemblies into gel networks.

View Article and Find Full Text PDF

Background/objectives: Crickets are recognized as an alternative source of chitosan. This study aimed to assess the potential of cricket-derived chitosan as a natural source to develop chitosan nanoparticles (CNPs).

Methods: Chitosan were isolated from different cricket species, including , , and .

View Article and Find Full Text PDF

As a small-molecule gelator used as a stabilizer in gel emulsions, it has numerous advantages, such as low dosage, independence from phase ratios, and ease of control. In this study, a cholesterol derivative (CSA) was designed and synthesized to be used as a stabilizer for gel emulsions. Gelation experiments demonstrated that this small molecule could gelate various organic solvents, including linear alkanes, toluene, isoamyl alcohol, and acetone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!