1. We used chimeric mice (PXB mice®), which were repopulated with human hepatocytes, to evaluate their predictabilities of human pharmacokinetics. 2. The relationships of total clearance (CLt) and the volume of distribution at steady state (Vdss) between that predicted from single-species allometric scaling (SSS) of PXB mice and the observed human values indicated good correlations for various drugs metabolized by cytochrome P450s (CYPs) and non-CYPs. 3. We examined the Dedrick plot with which the plasma concentration-time curves can exhibit superimposability using SSS of PXB mice for CLt and Vdss. The predicted plasma concentration-time curves using the complex Dedrick plot from PXB mice were generally superimposed with the observed human data. 4. However, the predicted curve of diazepam was not superimposable with the observed profile. Residual mouse hepatocytes in the livers of PXB mice may affect predictability of CLt of diazepam because significant discrepancy of in vitro intrinsic clearance in PXB mouse liver microsomes consisted of low and high replacement of human hepatocytes were observed. 5. The complex Dedrick plot with SSS from PXB mice is useful for predicting the plasma concentration-time curve in drug discovery, although there are some limitations.

Download full-text PDF

Source
http://dx.doi.org/10.3109/00498254.2015.1007112DOI Listing

Publication Analysis

Top Keywords

pxb mice
20
plasma concentration-time
16
concentration-time curves
12
sss pxb
12
dedrick plot
12
single-species allometric
8
allometric scaling
8
chimeric mice
8
human hepatocytes
8
vdss predicted
8

Similar Publications

Plasma and urinary CP I and CP III concentrations in chimeric mice with human hepatocytes after rifampicin administration.

Pharmacol Res Perspect

October 2024

Pharmaceutical Research Laboratories, Toray Industries, Inc., Kamakura, Kanagawa, Japan.

The interest in transporter-mediated drug interactions has been increasing in the field of drug development. In this study, we measured the plasma and urinary concentrations of coproporphyrin (CP) I and CP III as endogenous substrates for organic anion-transporting polypeptide (OATP) using chimeric mice with human hepatocytes (PXB mice) and examined the influence of an OATP inhibitor, rifampicin (RIF). CP I and CP III were actively taken up intracellularly, and RIF inhibited the uptake in a concentration-dependent manner for both CP I and CP III in human hepatocytes (PXB-cells).

View Article and Find Full Text PDF

Utility of Chimeric Mice with Humanized Livers for Predicting Hepatic Organic Anion-Transporting Polypeptide 1B-Mediated Clinical Drug-Drug Interactions.

Drug Metab Dispos

September 2024

Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.).

The influence of transporters on the pharmacokinetics of drugs is being increasingly recognized, and drug-drug interactions (DDIs) via modulation of transporters could lead to clinical adverse events. Organic anion-transporting polypeptide 1B (OATP1B) is a liver-specific uptake transporter in humans that can transport a broad range of substrates, including statins. It is a challenge to predict OATP1B-mediated DDIs using preclinical animal models because of species differences in substrate specificity and abundance levels of transporters.

View Article and Find Full Text PDF

Rational design synthesis and evaluation of a novel near-infrared fluorescent probe for selective imaging of amyloid-β aggregates in Alzheimer's disease.

Anal Chim Acta

November 2023

State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China. Electronic address:

Alzheimer's disease (AD) is a degenerative neurological disorder that remains incurable to date, seriously affecting the quality of life and health of those affected. One of the key neuropathological hallmarks of AD is the formation of amyloid-β (Aβ) plaques. Near-infrared (NIR) probes that possess a large Stokes shift show great potential for imaging of Aβ plaques in vivo and in vitro.

View Article and Find Full Text PDF

A novel, small anti-HBV compound reduces HBsAg and HBV-DNA by destabilizing HBV-RNA.

J Gastroenterol

April 2024

Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo, Kumamoto, 860-8556, Japan.

Background: Currently, standard treatments for chronic hepatitis B such as nucleos(t)ide analogs (NAs), effectively reduce hepatitis B virus (HBV) loads but rarely result in a functional cure (defined as sustained HBsAg loss). We report the discovery of a novel, 4-pyridone compound, SAG-524, a potent and orally bioavailable small molecule inhibitor of HBV replication.

Methods: The antiviral characteristics and selectivity of SAG-524 and its derivative compound against HBV were evaluated in HBV-infection assays and HBV-infected chimeric urokinase-type plasminogen activator/severe combined immunodeficiency mice with humanized livers (PXB mice), alone or in combination with entecavir.

View Article and Find Full Text PDF

Overcoming hepatitis B virus (HBV) is a challenging problem because HBV deceives the host immune system. We have found that DENN domain-containing 2A (DENND2A) was essential for HBV maintenance, although its role remains unclear. In this study, we elucidate its function by screening a novel DENND2A-binding peptide, DENP4-3S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!