Purpose: Platinum-based therapies are the first line treatments for most types of cancer including ovarian cancer. However, their use is associated with dose-limiting toxicities and resistance. We report initial translational studies of a theranostic nanoemulsion loaded with a cisplatin derivative, myrisplatin and pro-apoptotic agent, C6-ceramide.
Methods: The surface of the nanoemulsion is annotated with an endothelial growth factor receptor (EGFR) binding peptide to improve targeting ability and gadolinium to provide diagnostic capability for image-guided therapy of EGFR overexpressing ovarian cancers. A high shear microfludization process was employed to produce the formulation with particle size below 150 nm.
Results: Pharmacokinetic study showed a prolonged blood platinum and gadolinium levels with nanoemulsions in nu/nu mice. The theranostic nanoemulsions also exhibited less toxicity and enhanced the survival time of mice as compared to an equivalent cisplatin treatment.
Conclusions: Magnetic resonance imaging (MRI) studies indicate the theranostic nanoemulsions were effective contrast agents and could be used to track accumulation in a tumor. The MRI study additionally indicate that significantly more EGFR-targeted theranostic nanoemulsion accumulated in a tumor than non-targeted nanoemulsuion providing the feasibility of using a targeted theranostic agent in conjunction with MRI to image disease loci and quantify the disease progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490117 | PMC |
http://dx.doi.org/10.1007/s11095-015-1660-z | DOI Listing |
Theranostics
January 2025
Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
Cardiac fibroblasts are activated following myocardial infarction (MI) and cardiac fibrosis is a major driver of the growing burden of heart failure. A non-invasive targeting method for activated cardiac fibroblasts would be advantageous because of their importance for imaging and therapy. Targeting was achieved by linking a 7-amino acid peptide (EP9) to a perfluorocarbon-containing nanoemulsion (PFC-NE) for visualization by F-combined with H-MRI.
View Article and Find Full Text PDFInt J Nanomedicine
November 2024
Department of Pharmacy Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia.
Background: Conventional wound dressings often adhere to wounds and can cause secondary injury due to their lack of anti-inflammatory and antibacterial properties. In contrast, collagen-based nanoparticles (NPs) as drug delivery systems exhibit both biocompatibility and biodegradability, presenting a promising avenue for accelerating wound healing processes.
Aims Of Study: This review aims to provide a comprehensive overview of the mechanisms involved in wound healing, description of the attributes of ideal wound dressings, understanding of wound healing efficacy of collagen, exploring NPs-mediated drug delivery mechanisms in wound therapy, detailing the synthesis and fabrication techniques of collagen-based NPs, and delineating the applications of various collagen-based NPs infused wound dressings on wound healing.
Mol Ther
December 2024
Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. Electronic address:
Magn Reson Med
February 2025
Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.
Pharmaceutics
September 2024
Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!