Satellite cells (SC) are quiescent adult muscle stem cells critical for postnatal development. Children with cerebral palsy have impaired muscular growth and develop contractures. While flow cytometry previously demonstrated a reduced SC population, extracellular matrix abnormalities may influence the cell isolation methods used, systematically isolating fewer cells from CP muscle and creating a biased result. Consequently, the purpose of this study was to use immunohistochemistry on serial muscle sections to quantify SC in situ. Serial cross-sections from human gracilis muscle biopsies (n = 11) were labeled with fluorescent antibodies for Pax7 (SC transcriptional marker), laminin (basal lamina), and 4',6-diamidino-2-phenylindole (nuclei). Fluorescence microscopy under high magnification was used to identify SC based on labeling and location. Mean SC/100 myofibers was reduced by ∼70% (p < 0.001) in children with CP (2.89 ± 0.39) compared to TD children (8.77 ± 0.79). Furthermore, SC distribution across fields was different (p < 0.05) with increased percentage of SC in fields being solitary cells (p < 0.01) in children with CP. Quantification of SC number in situ, without any other tissue manipulation confirms children with spastic CP have a reduced number. This stem cell loss may, in part, explain impaired muscle growth and apparent decreased responsiveness of CP muscle to exercise.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jor.22860 | DOI Listing |
MethodsX
June 2025
Faculty of Nursing and Physiotherapy, Universidad de Lleida, Roig 2, 25198 Lleida, Montserrat, España.
Non-invasive brain stimulation (NIBS) techniques have emerged as a promising non-pharmacological adjunct to neurorehabilitation. Children with Cerebral Palsy (CP) exhibit altered cortical excitability, and while CP remains incurable, physiotherapy combined with other interventions is essential for managing motor dysfunction. Although some studies have examined NIBS using various stimulation parameters, there is limited evidence regarding its effects on the lower extremities and optimal administration protocols.
View Article and Find Full Text PDFFront Neurol
January 2025
Department of Pediatric Neurology, Children's Medical Center, First Hospital of Jilin University, Changchun, China.
Mitochondria is the cell's powerhouse. Mitochondrial disease refers to a group of clinically heterogeneous disorders caused by dysfunction in the mitochondrial respiratory chain, often due to mutations in mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) that encodes mitochondrial proteins. This dysfunction can lead to a variety of clinical phenotypes, particularly affecting organs with high energy demands, such as the brain and muscles.
View Article and Find Full Text PDFCrit Care Explor
January 2025
Department of Neonatal and Pediatric Intensive Care, Division of Pediatric Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands.
Objectives: The COVID-19 pandemic gave rise to uncertainty concerning potential sequelae related to a severe acute respiratory syndrome coronavirus 2 infection. This landscape is currently unfolding with studies reporting sequelae on various domains (physical, cognitive, and psychosocial), although most studies focus on adults or only one domain. We sought to investigate concurrent sequelae on multiple domains 1 year after PICU admission for Multisystem Inflammatory Syndrome in Children (MIS-C).
View Article and Find Full Text PDFFront Pediatr
January 2025
Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
Introduction: Infantile Epileptic Spasms Syndrome (IESS) typically has a profound impact on the neurodevelopment of patients. The study on IESS indicates possible geographical variation in etiology and a lack of data from China. Our study intends to summarize the etiology of IESS and analyze its characteristics.
View Article and Find Full Text PDFCureus
December 2024
Internal Medicine, School of Medicine, Xiamen University, Xiamen, CHN.
Attention-deficit/hyperactivity disorder (ADHD) is a complex neurodevelopmental condition, predominantly affecting children, characterized by inattention, hyperactivity, and impulsivity. A growing body of evidence has highlighted the potential influence of the gut microbiota on the onset and presentation of ADHD symptoms. The gut microbiota, a diverse microbial ecosystem residing within the gastrointestinal tract, exerts multiple effects on systemic physiology, including immune modulation, metabolic regulation, and neuronal signalling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!