Dependency of 2-methoxyestradiol-induced mitochondrial apoptosis on mitotic spindle network impairment and prometaphase arrest in human Jurkat T cells.

Biochem Pharmacol

Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea. Electronic address:

Published: April 2015

The present study sought to determine the correlation between 2-methoxyestradiol (2-MeO-E2)-induced cell cycle arrest and 2-MeO-E2-induced apoptosis. Exposure of Jurkat T cell clone (JT/Neo) to 2-MeO-E2 (0.5-1.0 μM) caused G2/M arrest, Bak activation, Δψm loss, caspase-9 and -3 activation, PARP cleavage, intracellular ROS accumulation, and apoptotic DNA fragmentation, whereas none of these events except for G2/M arrest were induced in Jurkat T cells overexpressing Bcl-2 (JT/Bcl-2). Under these conditions, Cdk1 phosphorylation at Thr-161 and dephosphorylation at Tyr-15, up-regulation of cyclin B1 expression, histone H1 phosphorylation, Cdc25C phosphorylation at Thr-48, Bcl-2 phosphorylation at Thr-56 and Ser-70, Mcl-1 phosphorylation at Ser-159/Thr-163, and Bim phosphorylation were detected irrespective of Bcl-2 overexpression. Concomitant treatment of JT/Neo cells with 2-MeO-E2 and the G1/S blocking agent aphidicolin resulted in G1/S arrest and abrogation of all apoptotic events, including Cdk1 activation, phosphorylation of Bcl-2, Mcl-1 and Bim, and ROS accumulation. The 2-MeO-E2-induced phosphorylation of Bcl-2 family proteins and mitochondrial apoptotic events were suppressed by a Cdk1 inhibitor, but not by an Aurora A kinase (AURKA), Aurora B kinase (AURKB), JNK, or p38 MAPK inhibitor. Immunofluorescence microscopic analysis revealed that 2-MeO-E2-induced mitotic arrest was caused by mitotic spindle network impairment and prometaphase arrest. Whereas 10-20 μM 2-MeO-E2 reduced the proportion of intracellular polymeric tubulin to monomeric tubulin, 0.5-5.0 μM 2-MeO-E2 increased it. These results demonstrate that the apoptogenic effect of 2-MeO-E2 (0.5-1.0 μM) was attributable to mitotic spindle defect-mediated prometaphase arrest, Cdk1 activation, phosphorylation of Bcl-2, Mcl-1, and Bim, and activation of Bak and mitochondria-dependent caspase cascade.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2015.02.011DOI Listing

Publication Analysis

Top Keywords

mitotic spindle
12
prometaphase arrest
12
phosphorylation bcl-2
12
phosphorylation
9
spindle network
8
network impairment
8
impairment prometaphase
8
arrest
8
jurkat cells
8
2-meo-e2 05-10
8

Similar Publications

Melanoma is a highly aggressive malignancy originating from melanocytes, characterized by its potential to arise in various anatomic locations, both common and rare. The incidence of melanoma has been steadily increasing globally, with variations in clinical presentation, tumor behavior, and prognosis depending on the anatomical site involved. Understanding the diverse pathological spectrum of melanoma is critical for optimizing diagnostic and therapeutic strategies.

View Article and Find Full Text PDF

Diverse microtubule-binding repeats regulate TPX2 activities at distinct locations within the spindle.

J Cell Biol

March 2025

State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China.

TPX2 is an elongated molecule containing multiple α-helical repeats. It stabilizes microtubules (MTs), promotes MT nucleation, and is essential for spindle assembly. However, the molecular basis of how TPX2 performs these functions remains elusive.

View Article and Find Full Text PDF

Background: SET domain-containing protein 4 (SETD4) is a histone methyltransferase that has been shown to modulate cell proliferation, differentiation, and inflammatory responses by regulating histone H4 trimethylation (H4K20me3). Previous reports have demonstrated its function in the quiescence of cancer stem cells as well as drug resistance in several cancers. A limited number of systematic studies have examined SETD4's role in the tumor microenvironment, pathogenesis, prognosis, and therapeutic response.

View Article and Find Full Text PDF

During chromosome segregation, the spindle assembly checkpoint (SAC) detects errors in kinetochore-microtubule attachments. Timely activation and maintenance of the SAC until defects are corrected is essential for genome stability. Here, we show that shugoshin (Sgo1), a conserved tension-sensing protein, ensures the maintenance of SAC signals in response to unattached kinetochores during mitosis in a basidiomycete budding yeast Cryptococcus neoformans.

View Article and Find Full Text PDF

Centrioles play central roles in ciliogenesis and mitotic spindle assembly. Once assembled, centrioles exhibit long-term stability, a property essential for maintaining numerical control. How centriole stability is achieved and how it is lost in certain biological contexts are still not completely understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!