There is evidence that multiple stable equilibrium states are possible in real-life ecological systems. Phenomenological mathematical models which exhibit such properties can be constructed rather straightforwardly. For instance, for a predator-prey system this result can be achieved through the use of non-monotonic functional response for the predator. However, while formal formulation of such a model is not a problem, the biological justification for such functional responses and models is usually inconclusive. In this note, we explore a conjecture that a multitude of equilibrium states can be caused by an adaptation of animal behaviour to changes of environmental conditions. In order to verify this hypothesis, we consider a simple predator-prey model, which is a straightforward extension of the classic Lotka-Volterra predator-prey model. In this model, we made an intuitively transparent assumption that the prey can change a mode of behaviour in response to the pressure of predation, choosing either "safe" of "risky" (or "business as usual") behaviour. In order to avoid a situation where one of the modes gives an absolute advantage, we introduce the concept of the "cost of a policy" into the model. A simple conceptual two-dimensional predator-prey model, which is minimal with this property, and is not relying on odd functional responses, higher dimensionality or behaviour change for the predator, exhibits two stable co-existing equilibrium states with basins of attraction separated by a separatrix of a saddle point.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tpb.2015.02.004 | DOI Listing |
PLoS Comput Biol
January 2025
Department of Physics, University of Toronto, Toronto, Ontario, Canada.
Efflux pumps that transport antibacterial drugs out of bacterial cells have broad specificity, commonly leading to broad spectrum resistance and limiting treatment strategies for infections. It remains unclear how efflux pumps can maintain this broad spectrum specificity to diverse drug molecules while limiting the efflux of other cytoplasmic content. We have investigated the origins of this broad specificity using theoretical models informed by the experimentally determined structural and kinetic properties of efflux pumps.
View Article and Find Full Text PDFMyc hyperactivation coordinately regulates numerous metabolic processes to drive lymphomagenesis. Here, we elucidate the temporal and functional relationships between the medley of pathways, factors, and mechanisms that cooperate to control redox homeostasis in Myc-overexpressing B cell lymphomas. We find that Myc overexpression rapidly stimulates the oxidative pentose phosphate pathway (oxPPP), nucleotide synthesis, and mitochondrial respiration, which collectively steers cellular equilibrium to a more oxidative state.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemistry, University at Albany - State University of New York (SUNY), 1400 Washington Avenue, Albany, New York 12222, United States.
The contamination of water with dyes stemming from the discharge of industrial waste poses significant environmental risks and health concerns. In this study, the phytoremediation potential of the wetland plant was investigated (as a function of plant biomass, pH, contact time, and initial dye concentration) for the removal of methylene blue and methyl red dyes from wastewater. The experimental adsorption capacities under the optimum conditions were found to be 1.
View Article and Find Full Text PDFCNS Neurol Disord Drug Targets
January 2025
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570015. JSS Academy of Higher Education and Research, Mysuru, Karnataka, India.
There is a myriad of activities that involve mitochondria that are crucial for maintaining cellular equilibrium and genetic stability. In the pathophysiology of neurodegenerative illnesses, mitochondrial transcription influences mitochondrial equilibrium, which in turn affects their biogenesis and integrity. Among the crucial proteins for keeping the genome in optimal repair is mitochondrial transcription factor A, more commonly termed TFAM.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
The current work presents comparative assessment of affinity of the designed DNA aptamers for extracellular domain of the human epidermal growth factor receptor (EGFR*). The affinity data of the 20 previously published aptamers are summarized. Diversity of the aptamer selection methods and techniques requires unification of the comparison algorithms, which is also necessary for designing aptamers used in the post-selection fitting to the target EGFR* protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!