Quantitative susceptibility mapping (QSM) allows new insights into tissue composition and organization by assessing its magnetic property. Previous QSM studies have already demonstrated that magnetic susceptibility is highly sensitive to myelin density and fiber orientation as well as to para- and diamagnetic trace elements. Image resolution in QSM with current approaches is limited by the long acquisition time of 3D scans and the need for high signal to noise ratio (SNR) to solve the dipole inversion problem. We here propose a new total-generalized-variation (TGV) based method for QSM reconstruction, which incorporates individual steps of phase unwrapping, background field removal and dipole inversion in a single iteration, thus yielding a robust solution to the reconstruction problem. This approach has beneficial characteristics for low SNR data, allowing for phase data to be rapidly acquired with a 3D echo planar imaging (EPI) sequence. The proposed method was evaluated with a numerical phantom and in vivo at 3 and 7 T. Compared to total variation (TV), TGV-QSM enforced higher order smoothness which yielded solutions closer to the ground truth and prevented stair-casing artifacts. The acquisition time for images with 1mm isotropic resolution and whole brain coverage was 10s on a clinical 3 Tesla scanner. In conclusion, 3D EPI acquisition combined with single-step TGV reconstruction yields reliable QSM images of the entire brain with 1mm isotropic resolution in seconds. The short acquisition time combined with the robust reconstruction may enable new QSM applications in less compliant populations, clinical susceptibility tensor imaging, and functional resting state examinations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2015.02.041DOI Listing

Publication Analysis

Top Keywords

acquisition time
12
quantitative susceptibility
8
susceptibility mapping
8
dipole inversion
8
1mm isotropic
8
isotropic resolution
8
qsm
6
fast quantitative
4
susceptibility
4
mapping epi
4

Similar Publications

Broadband CARS is a coherent Raman scattering technique that provides access to the full biological vibrational spectrum within milliseconds, facilitating the recording of widefield hyperspectral Raman images. In this work, BCARS hyperspectral images of unstained cells from two different cell lines of immune lineage (T cell [Jurkat] and pDCs [CAL-1]) were recorded and analyzed using multivariate statistical algorithms in order to determine the spectral differences between the cells. A classifier was trained which could distinguish the known cells with a 97% out-of-bag accuracy.

View Article and Find Full Text PDF

Deep and accurate proteome analysis is crucial for understanding cellular processes and disease mechanisms; however, it is challenging to implement in routine settings. In this protocol, we combine a robust chromatographic platform with a high-performance mass spectrometric setup to enable routine yet in-depth proteome coverage for a broad community. This entails tip-based sample preparation and pre-formed gradients (Evosep One) combined with a trapped ion mobility time-of-flight mass spectrometer (timsTOF, Bruker).

View Article and Find Full Text PDF

Prolonged sitting can negatively impact postprandial glucose levels and cognitive function. While short bouts of stair climbing are thought to mitigate these risks, the findings remain inconclusive. The present study aimed to explore the effects of stair climbing bouts on postprandial glucose and cognitive functions during prolonged sitting.

View Article and Find Full Text PDF

Compressed SENSE acceleration factor influence on magnetic resonance image quality in patients with endometrial cancer.

Phys Med

January 2025

Center for Radiology, University Clinical Center of Vojvodina, Hajduk Veljkova 1-9, 21000 Novi Sad, Serbia; Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia. Electronic address:

Objectives: To investigate the impact of compressed sensing - sensitivity encoding (CS-SENSE) acceleration factor on the diagnostic performance of magnetic resonance imaging (MRI) within standard female pelvis protocol in patients with endometrial cancer.

Methods: T2-weighted turbo spin echo (TSE) sequence from standard female pelvic MRI protocol was chosen due to its long acquisition time and essential role in the evaluation of morphological characteristics of the female pelvic anatomical structures. Fully sampled reference scans and multiple prospectively 2x to 5x under-sampled CS-SENSE scans were acquired.

View Article and Find Full Text PDF

Deep Equilibrium Unfolding Learning for Noise Estimation and Removal in Optical Molecular Imaging.

Comput Med Imaging Graph

January 2025

CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Kidney Diseases, Beijing 100853, China. Electronic address:

In clinical optical molecular imaging, the need for real-time high frame rates and low excitation doses to ensure patient safety inherently increases susceptibility to detection noise. Faced with the challenge of image degradation caused by severe noise, image denoising is essential for mitigating the trade-off between acquisition cost and image quality. However, prevailing deep learning methods exhibit uncontrollable and suboptimal performance with limited interpretability, primarily due to neglecting underlying physical model and frequency information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!