Background: The human papillomavirus (HPV) E2 protein is a transcriptional repressor of the oncogenes E6/E7 and loss of E2 function is considered a key step in carcinogenesis. Integration of HPV into the host genome may disrupt the E2 gene. Furthermore, methylation of CpG dinucleotides in E2-binding sites (E2BSs) in the HPV upstream regulatory region may interfere with transcriptional repression of E6 and E7 by E2. The authors hypothesized that the CpG methylation status of E2BS identifies subtypes of HPV type 16 (HPV16)-associated oropharyngeal squamous cell cancers (OPSCC) in association with E2 gene integrity and viral integration.

Methods: Methylation of 10 CpG dinucleotides within the upstream regulatory region, encompassing E2BSs 1, 2, 3, and 4, was quantitatively analyzed by bisulfite pyrosequencing in 57 HPV16-associated OPSCC cases. E2 status was analyzed by gene amplification and quantitative real-time reverse transcriptase-polymerase chain reaction. Viral integration was determined by integration-specific polymerase chain reaction methods.

Results: Three subgroups with differential methylation at E2BS3 and E2BS 4 were identified: 1) complete methylation (>80%) associated with the presence of integrated HPV genomes with an intact E2 gene; 2) intermediate methylation levels (20%-80%) with predominantly episomal HPV genomes with intact E2; and 3) no methylation (<20%) with a disrupted E2 gene. Patients with high methylation levels tended to have a worse 5-year overall survival compared with patients with intermediate methylation (hazard ratio, 3.23; 95% confidence interval, 1.13-9.24 [P = .06]).

Conclusions: Methylation of E2BS3 and E2BS4 in OPSCC is associated with E2 integrity and viral physical status. It might explain deregulated viral oncogene expression in the presence of E2. The prognostic significance of E2BS methylation for patients with HPV-associated OPSCC needs to be analyzed further.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cncr.29315DOI Listing

Publication Analysis

Top Keywords

methylation
8
methylation status
8
e2-binding sites
8
methylation cpg
8
cpg dinucleotides
8
upstream regulatory
8
regulatory region
8
chain reaction
8
hpv genomes
8
genomes intact
8

Similar Publications

Polydopamine-Mediated, Centrifugal Force-Driven Gold Nanoparticle-Deposited Microneedle SERS Sensors for Food Safety Monitoring Theoretical Study of the SERS Substrate Fabrication.

ACS Sens

January 2025

The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China.

Microneedle (MN) sensors have great promise for food safety detection, but the rapid preparation of MNs for surface-enhanced Raman scattering (SERS) sensors with tunable and homogeneous nanoparticles remains a great challenge. To address this, a SERS sensor of gold nanoparticles@polydopamine@poly(methyl methacrylate) MN (AuNPs@PDA@PMMA-MN) was developed. The extended-Derjaguin-Landau-Verwey-Overbeek theory was applied to calculate the interaction energy between AuNPs and PDA.

View Article and Find Full Text PDF

Enhancing Cannabichromenic Acid Biosynthesis in .

ACS Synth Biol

January 2025

State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.

Cannabichromene (CBC), a valuable but extremely low-abundance component of cannabinoids in L., is known for its ability to promote neurogenesis. The scarcity of CBC in natural is primarily attributed to the inefficiency of the 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4 phosphate (DOXP/MEP) and fatty acid metabolism pathways, along with the limited competitive advantage of cannabichromenic acid synthetase (CBCAS) compared to other cannabinoid synthases.

View Article and Find Full Text PDF

Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting.

View Article and Find Full Text PDF

Purpose Of Review: Complex Regional Pain Syndrome (CRPS) is a neuropathic pain disorder characterized by pain disproportionate to the inciting event that is constant for an extended duration. Numerous treatment options for this condition have been explored with unsatisfactory results in many cases. Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist typically used as an anesthetic and analgesic, presents a promising potential treatment for CRPS in patients who fail to respond to traditional therapies.

View Article and Find Full Text PDF

Construction of an electrochemical sensor for the detection of methyl parathion with three-dimensional graphdiyne-carbon nanotubes.

Mikrochim Acta

January 2025

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.

To enhance the application performance of graphdiyne (GDY) in electrochemical sensing, carbon nanotubes (CNTs) were grown in situ to construct three-dimensional nanoarchitectures of GDY-CNTs composites. GDY-CNTs showed superior electrochemical properties and detection response to MP when compared with GDY, as the in situ growth of CNTs significantly increased the electrode surface area and enhanced the electron transfer process. GDY-CNTs were successfully used to construct electrochemical sensors for methyl parathion (MP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!