Effect of Zn(2+) ions on the conformation of single-stranded polynucleotides polyU and polyC in a wide temperature range at pH 7 was studied by differential UV spectroscopy and by thermal denaturation. The atoms coordinating Zn(2+) ions were determined (O4 and N3 in polyU and N3 in polyC). A three-dimensional phase diagram and its two-dimensional components were constructed for a polyC-Zn(2+) system. The phase diagram revealed a region in which ordered single-stranded structures, stabilized by Zn(2+)-mediated cross-links involving N3 atom of cytosine, are formed. The phase diagram also demonstrated that the behavior of the polyC-Zn(2+) system is similar to the effect of retrograde condensation observed in some binary solutions of simple liquids. A dependence of Zn(2+)-polyC binding constant on the metal ion concentration was obtained. The reason why zinc-induced transition of the sequences with adenine-uracil (AU) base pairs from A-form geometry to a metallized m-form requires higher pH compared to the sequences comprised of guanine-cytosine (GC) base pairs is explained. This information can be useful for the development of possible technological applications based on m-DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.5b00558DOI Listing

Publication Analysis

Top Keywords

zn2+ ions
12
polyu polyc
12
phase diagram
12
polyc-zn2+ system
8
base pairs
8
interaction zn2+
4
ions single-stranded
4
single-stranded polyu
4
polyc neutral
4
neutral solutions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!