Stress and telomere shortening among central Indian conservation refugees.

Proc Natl Acad Sci U S A

Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1681;

Published: March 2015

Research links psychosocial stress to premature telomere shortening and accelerated human aging; however, this association has only been demonstrated in so-called "WEIRD" societies (Western, educated, industrialized, rich, and democratic), where stress is typically lower and life expectancies longer. By contrast, we examine stress and telomere shortening in a non-Western setting among a highly stressed population with overall lower life expectancies: poor indigenous people--the Sahariya--who were displaced (between 1998 and 2002) from their ancestral homes in a central Indian wildlife sanctuary. In this setting, we examined adult populations in two representative villages, one relocated to accommodate the introduction of Asiatic lions into the sanctuary (n = 24 individuals), and the other newly isolated in the sanctuary buffer zone after their previous neighbors were moved (n = 22). Our research strategy combined physical stress measures via the salivary analytes cortisol and α-amylase with self-assessments of psychosomatic stress, ethnographic observations, and telomere length assessment [telomere-fluorescence in situ hybridization (TEL-FISH) coupled with 3D imaging of buccal cell nuclei], providing high-resolution data amenable to multilevel statistical analysis. Consistent with expectations, we found significant associations between each of our stress measures--the two salivary analytes and the psychosomatic symptom survey--and telomere length, after adjusting for relevant behavioral, health, and demographic traits. As the first study (to our knowledge) to link stress to telomere length in a non-WEIRD population, our research strengthens the case for stress-induced telomere shortening as a pancultural biomarker of compromised health and aging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352804PMC
http://dx.doi.org/10.1073/pnas.1411902112DOI Listing

Publication Analysis

Top Keywords

telomere shortening
16
stress telomere
12
telomere length
12
stress
8
central indian
8
lower life
8
life expectancies
8
salivary analytes
8
telomere
6
shortening
4

Similar Publications

Background: Telomere length has been identified as a marker for biological aging and stressful body states. Mind-body interventions for stress reduction such as meditation, yoga, and pranayama have been previously tested to evaluate their efficacy in restricting telomere shortening.

Primary Study Objective: In this study, the effect of Sudarshan Kriya Yoga (SKY) is investigated for its influence on telomere length.

View Article and Find Full Text PDF

The Nuclear Condensates of ESE3/EHF Induce Cellular Senescence without the Associated Inflammatory Secretory Phenotype in Pancreatic Ductal Adenocarcinoma.

Cancer Lett

December 2024

Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China. Electronic address:

Senescent cells are in a stable state of cell cycle arrest, leading to a natural barrier to tumorigenesis. Senescent cells secrete a pool of molecules, including cytokines, chemokines, proteases, and growth factors, termed the senescence-associated secretory phenotype (SASP), paradoxically contributing to pro-tumorigenic processes. However, the mechanism for regulating senescence and SASP in tumor cells remains unclear.

View Article and Find Full Text PDF

Association of critically short telomeres with brain and blood markers of ageing and Alzheimer's disease in older adults.

Alzheimers Res Ther

December 2024

Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France.

Background: Accumulation of critically short telomeres (CST) is implicated in decreased tissular regenerative capacity and increased susceptibility to degenerative diseases such as Alzheimer's disease (AD). Telomere shortening has also been associated with age-related brain changes. However, it remains unclear whether CST accumulation is directly associated with AD markers or instead amplifies age-related effects, potentially increasing susceptibility of developing AD in cognitively healthy older adults.

View Article and Find Full Text PDF

Cellular senescence is a condition characterized by stable, irreversible cell cycle arrest linked to the aging process. The accumulation of senescent cells in the cardiac muscle can contribute to various cardiovascular diseases (CVD). Telomere shortening, epigenetic modifications, DNA damage, mitochondrial dysfunction, and oxidative stress are known contributors to the onset of cellular senescence in the heart.

View Article and Find Full Text PDF

Cellular senescence is a multifaceted process marked by irreversible cell cycle arrest in response to stressors such as DNA damage, oxidative stress, and telomere shortening, leading to significant cellular and mitochondrial alterations. These changes impact mesenchymal stem cell (MSC) function, affecting their differentiation, self-renewal, and regenerative abilities. Senescent MSCs adopt the senescence-associated secretory phenotype (SASP), characterized by the secretion of pro-inflammatory factors that propagate senescence to neighboring cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!