Interspecific studies of adult mammals show that heart mass (M(h), g) increases in direct proportion to body mass (M(b), kg), such that M(h) ∝ M(b)(1.00). However, intraspecific studies on heart mass in mammals at different stages of development reveal considerable variation between species, M(h) ∝ M(b)(0.70-1.00). Part of this variation may arise as a result of the narrow body size range of growing placental mammals, from birth to adulthood. Marsupial mammals are born relatively small and offer an opportunity to examine the ontogeny of heart mass over a much broader body size range. Data from 29 western grey kangaroos Macropus fuliginosus spanning 800-fold in body mass (0.084-67.5 kg) reveal the exponent for heart mass decreases significantly when the joey leaves the pouch (ca. 5-6 kg body mass). In the pouch, the heart mass of joeys scales with hyperallometry, M(h(in-pouch)) = 6.39 M(b)(1.10 ± 0.05), whereas in free-roaming juveniles and adults, heart mass scales with hypoallometry, M(h(postpouch)) = 14.2 Mb(0.77 ± 0.08). Measurements of heart height, width, and depth support this finding. The relatively steep heart growth allometry during in-pouch development is consistent with the increase in relative cardiac demands as joeys develop endothermy and the capacity for hopping locomotion. Once out of the pouch, the exponent decreases sharply, possibly because the energy required for hopping is independent of speed, and the efficiency of energy storage during hopping increases as the kangaroo grows. The right:left ventricular mass ratios (0.30-0.35) do not change over the body mass range and are similar to those of other mammals, reflecting the principle of Laplace for the heart.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/679718 | DOI Listing |
Biochem Biophys Res Commun
January 2025
Department of Ultrasonography, Fuwai Yunnan Hospital, Chinese Academy of Medical, Sciences/Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, 650102, China. Electronic address:
Pulmonary arterial hypertension (PAH) is a syndrome characterized by increased pulmonary vascular resistance and elevated pulmonary artery pressure, ultimately leading to right heart failure and even death. Increasing evidence implicates the fat mass and obesity-associated protein (FTO) in various metabolic and inflammatory pathways; however, its role in pulmonary endothelial function and PAH remains largely unexplored. In this study, we examined the effects of endothelial cell-specific FTO knockout on PAH development.
View Article and Find Full Text PDFRedox Rep
December 2025
Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.
Objective: Myocardial ischemia-reperfusion injury (MIRI) is a highly complex disease with high morbidity and mortality. Studying the molecular mechanism of MIRI and discovering new targets are crucial for the future treatment of MIRI.
Methods: We constructed the MIRI rat model and hypoxia/reoxygenation (H/R) injury cardiomyocytes model.
JA Clin Rep
January 2025
Department of Anesthesiology and Critical Care Medicine, Hokkaido University Hospital, N14W5, Kita-ku, Sapporo, 060-8648, Japan.
Background: Plasma exchange (PE) removes high-molecular-weight substances and is sometimes used for antineutrophil cytoplasmic antibody-associated vasculitis (AAV) with alveolar hemorrhage. Hypotension during PE is rare, except in allergic cases. We report a case of shock likely caused by increased pulmonary vascular resistance (PVR) during PE.
View Article and Find Full Text PDFPhysiol Rep
February 2025
Quebec Heart and Lung Institute - Laval University, Quebec, Quebec, Canada.
Metabolic dysfunction-associated steatotic liver disease (MASLD) describes liver diseases caused by the accumulation of triglycerides in hepatocytes (steatosis) as well as the resulting inflammation and fibrosis. Previous studies have demonstrated that accumulation of fat in visceral adipose tissue compartments and the liver is associated with alterations in the circulating levels of some amino acids, notably glutamate. This study aimed to investigate the associations between circulating amino acids, particularly glutamate, and MASLD.
View Article and Find Full Text PDFNanotoxicology
January 2025
Infection, Inflammation and Repair, Faculty of Medicine, University of Southampton, Southampton, UK.
The role of surfactant proteins A and D (SP-A and SP-D) in lung clearance and translocation to secondary organs of inhaled nanoparticles was investigated by exposing SP-A and SP-D knockout (AKO and DKO) and wild type (WT) mice nose-only for 3 hours to an aerosol of 20 nm gold nanoparticles (AuNPs). Animals were euthanised at 0-, 1-, 7- and 28-days post-exposure. Analysis by inductively coupled plasma mass spectrometry (ICP-MS) of the liver and kidneys showed that extrapulmonary translocation was below the limits of detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!