A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The fat and the furriest: morphological changes in harp seal fur with ontogeny. | LitMetric

The fat and the furriest: morphological changes in harp seal fur with ontogeny.

Physiol Biochem Zool

Department of Biology, Adelphi University, Garden City, New York; 2School of Fisheries and Ocean Sciences, University of Alaska, Fairbanks, Alaska; 3Department of Biology, University of Alaska, Anchorage, Alaska.

Published: April 2016

Ontogenetic changes in physiological performance often exemplify the development of adaptations to environmental challenges. For mammals in polar regions, the extreme cold of the environment presents a constant challenge to thermal homeostasis. The harp seal (Pagophilus groenlandicus) is an Arctic species that shifts its thermoregulatory strategy with ontogeny. Adult harp seals primarily use blubber for insulation, but newborn harp seals instead rely on their fur coat while their blubber layer develops. Harp seal pups are weaned abruptly, less than 2 wk after birth, and must subsequently learn to swim and dive in frigid waters on their own. This study examined how the morphological characteristics of harp seal fur change with ontogeny. We compared hair length, hair circularity, and hair density for neonates (1 d old; n = 7), early-nursing pups (4 d old; n = 3), late-nursing pups (9 d old; n = 4), newly weaned (molting) pups (2 wk old; n = 5), late-weaned (molted) pups (3 wk old; n = 4), and adult harp seals (n = 4). Hairs were shorter (P < 0.001) and flatter (P < 0.001) in older animals. Additionally, hair density decreased with age (P < 0.001), in terms of both the average number of hair bundles per unit area and the average number of underhairs present in any given bundle. These morphological changes were associated with a reduced thermal resistance of the pelt in late-weaned (molted) pups and adults (P < 0.001). Results are consistent with known evolutionary patterns of fur morphology associated with the transition from fur to blubber in aquatic species, yet this is the first time such morphological differences have been demonstrated across age classes within a single species. Thus, the ontogenetic patterns described here for harp seals recapitulate the convergent phylogenetic patterns observed across secondarily aquatic species. Overall, the timing of these ontogenetic changes may limit the ability of harp seals to adapt to the deterioration of sea ice in the Arctic, as predicted with continued climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1086/680080DOI Listing

Publication Analysis

Top Keywords

harp seals
20
harp seal
16
harp
9
morphological changes
8
seal fur
8
ontogenetic changes
8
adult harp
8
hair density
8
late-weaned molted
8
molted pups
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!