Unraveling the genetics of Joubert and Meckel-Gruber syndromes.

J Pediatr Genet

Department of Ophthalmology and Neuroscience, University of Leeds, UK.

Published: November 2014

AI Article Synopsis

  • Joubert (JBTS) and Meckel-Gruber (MKS) syndromes are recessive neurodevelopmental disorders linked to mutations in proteins associated with the primary cilium, displaying a wide range of symptoms and genetic variability.
  • Recent advancements in genetic technology have enhanced diagnosis and management for ciliopathy patients, including noteworthy genotype-phenotype correlations like the link between mutations and the JBTS variant COACH syndrome.
  • Understanding the subcellular location of JBTS and MKS proteins in the transition zone of cilia sheds light on their role in regulating essential signaling pathways, while challenges remain in deciphering the clinical significance of unknown genetic variants and the molecular drivers of phenotypic diversity.

Article Abstract

Joubert (JBTS) and Meckel-Gruber (MKS) syndromes are recessive neurodevelopmental conditions caused by mutations in proteins that are structural or functional components of the primary cilium. In this review we provide an overview of their clinical diagnosis, management and molecular genetics. Both have variable phenotypes, extreme genetic heterogeneity, and display allelism both with each other and other ciliopathies. Recent advances in genetic technology have significantly improved diagnosis and clinical management of ciliopathy patients, with the delineation of some general genotype-phenotype correlations. We highlight those that are most relevant for clinical practice, including the correlation between mutations and the JBTS variant phenotype of COACH syndrome. The subcellular localization of the known MKS and JBTS proteins is now well-described, and we discuss some of the contemporary ideas about ciliopathy disease pathogenesis. Most JBTS and MKS proteins localize to a discrete ciliary compartment called the transition zone (TZ), and act as structural components of the so-called "ciliary gate" to regulate the ciliary trafficking of cargo proteins or lipids. Cargo proteins include enzymes and transmembrane proteins that mediate intracellular signaling. The disruption of TZ function may contribute to the ciliopathy phenotype by altering the composition of the ciliary membrane or axoneme, with impacts on essential developmental signaling including the Wnt and Shh pathways as well as the regulation of secondary messengers such as inositol-1,4,5-trisphosphate (InsP3) and cAMP. However, challenges remain in the interpretation of the pathogenic potential of genetic variants of unknown significance, and in the elucidation of the molecular mechanisms of phenotypic variability in JBTS and MKS. The further genetic and functional characterization of these conditions is essential to prioritize patients for new targeted therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4340537PMC
http://dx.doi.org/10.3233/PGE-14090DOI Listing

Publication Analysis

Top Keywords

jbts mks
8
cargo proteins
8
proteins
6
jbts
5
unraveling genetics
4
genetics joubert
4
joubert meckel-gruber
4
meckel-gruber syndromes
4
syndromes joubert
4
joubert jbts
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!