The neural basis of deception in strategic interactions.

Front Behav Neurosci

Department of Public Economics, University of Innsbruck Innsbruck, Austria ; Department of Economics, University of Cologne Cologne, Germany.

Published: March 2015

Communication based on informational asymmetries abounds in politics, business, and almost any other form of social interaction. Informational asymmetries may create incentives for the better-informed party to exploit her advantage by misrepresenting information. Using a game-theoretic setting, we investigate the neural basis of deception in human interaction. Unlike in most previous fMRI research on deception, the participants decide themselves whether to lie or not. We find activation within the right temporo-parietal junction (rTPJ), the dorsal anterior cingulate cortex (ACC), the (pre)cuneus (CUN), and the anterior frontal gyrus (aFG) when contrasting lying with truth telling. Notably, our design also allows for an investigation of the neural foundations of sophisticated deception through telling the truth-when the sender does not expect the receiver to believe her (true) message. Sophisticated deception triggers activation within the same network as plain lies, i.e., we find activity within the rTPJ, the CUN, and aFG. We take this result to show that brain activation can reveal the sender's veridical intention to deceive others, irrespective of whether in fact the sender utters the factual truth or not.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4325923PMC
http://dx.doi.org/10.3389/fnbeh.2015.00027DOI Listing

Publication Analysis

Top Keywords

neural basis
8
basis deception
8
informational asymmetries
8
sophisticated deception
8
deception
5
deception strategic
4
strategic interactions
4
interactions communication
4
communication based
4
based informational
4

Similar Publications

Background: Understanding the neural basis of behavior requires insight into how different brain systems coordinate with each other. Existing connectomes for various species have highlighted brain systems essential to various aspects of behavior, yet their application to complex learned behaviors remains limited. Research on vocal learning in songbirds has extensively focused on the vocal control network, though recent work implicates a variety of circuits in contributing to important aspects of vocal behavior.

View Article and Find Full Text PDF

Social media generates vast amounts of spatio-temporal sequential data. However, current methods often ignore the complex spatio-temporal correlations within these data. This oversight makes it difficult to fully capture the dynamic features of the data.

View Article and Find Full Text PDF

The study of the cortical basis of reading has greatly benefited from the use of naturalistic paradigms that permit eye movements. However, due to the short stimulus lengths used in most naturalistic reading studies, it remains unclear how reading of texts comprising more than isolated sentences modulates cortical processing. To address this question, we used magnetoencephalography to study the spatiospectral distribution of oscillatory activity during naturalistic reading of multi-page texts.

View Article and Find Full Text PDF

Single-cell synaptome mapping: its technical basis and applications in critical period plasticity research.

Front Neural Circuits

December 2024

Department of Cellular Neuropathology, Brain Research Institute, Niigata University, Niigata, Japan.

Our brain adapts to the environment by optimizing its function through experience-dependent cortical plasticity. This plasticity is transiently enhanced during a developmental stage, known as the "critical period," and subsequently maintained at lower levels throughout adulthood. Thus, understanding the mechanism underlying critical period plasticity is crucial for improving brain adaptability across the lifespan.

View Article and Find Full Text PDF

Aims: Previous studies suggested that structural and functional connectivity of right frontotemporal circuits associate with music perception. Emerging evidences demonstrated that structure-function coupling is important for cognition and may allow for a more sensitive investigation of brain-behavior association, while we know little about the relationship between structure-function coupling and music perception.

Methods: We collected multimodal neuroimaging data from 106 participants and measured their music perception by Montreal Battery of Evaluation of Amusia (MBEA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!