Tendons are fibrous connective tissues that transmit force between muscle and bone. Whereas the molecular and cellular mechanisms of bone and muscle development have been well studied, that of tendon development is poorly understood. Using the Scx-GFP transgenic mice, we isolated GFP(+) cells from the developing mouse limbs at E11.5, E13.5, and E15.5, respectively, and carried out whole transcriptome RNA-seq analysis. Comparing the gene expression profiles of GFP(+) and GFP(-) cells in the E13.5 limb isolated over 1,500 genes that exhibited enrichment of mRNA expression by at least 1.5-fold in the GFP(+) cells. Of these, 778 genes showed expression up-regulated by more than 1.5-fold from E11.5 to E13.5 and 516 genes showed expression up-regulated by more than 1.5-fold from E13.5 to E15.5 in the GFP(+) cell population. Interestingly, over 30 genes encoding transcription factors are among the early-activated genes in the GFP(+) cells. Whole mount and section in situ hybridization analyses showed that many of these transcription factor genes have distinct patterns of expression during limb development and identified Foxf2 expression as a specific marker for differentiated dorsal limb tendon cells. Together, these data provide a valuable resource for further investigation of the molecular mechanisms regulating tendon development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4616261 | PMC |
http://dx.doi.org/10.1002/jor.22886 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!