The fluorescent tracer agent 3,6-diamino-2,5-bis{N-[(1R)-1-carboxy-2-hydroxyethyl]carbamoyl}pyrazine, designated MB-102, has been developed with properties and attributes for use as a direct measure of glomerular filtration rate (GFR). In comparison to known standard exogenous GFR agents in animal models, MB-102 has demonstrated an excellent correlation. A battery of toxicity tests has been completed on this new fluorescent tracer agent, including single dose toxicity studies in rats and dogs to determine overall toxicity and toxicokinetics of the compound. Blood compatibility, mutation assay, chromosomal aberration assay, and several other assays were also completed. Toxicity assessments were based on mortality, clinical signs, body weight, food consumption and anatomical pathology. Doses of up to 200-300 times the estimated human dose were administered. No test-article related effects were noted on body weight, food consumption, ophthalmic observations and no abnormal pathology was seen in either macroscopic or microscopic evaluations of any organs or tissues. All animals survived to scheduled sacrifice. Transient discoloration of skin and urine was noted at the higher dose levels in both species as expected from a highly fluorescent compound and was not considered pathological. Thus initial toxicology studies of this new fluorescent tracer agent MB-102 have resulted in negligible demonstrable pathological test article concerns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yrtph.2015.02.018 | DOI Listing |
Eur J Surg Oncol
December 2024
Vrije Universiteit Brussel (VUB), Molecular Imaging and Therapy Research Group, MITH, Aartselaar 103, 1090, Brussels, Belgium.
Background: Fluorescence molecular imaging, a potent and non-invasive technique, has become indispensable in medicine for visualizing molecular processes. In surgical oncology, it aids treatment by allowing visualization of tumor cells during fluorescence-guided surgery (FGS). Targeting the urokinase plasminogen activator receptor (uPAR), overexpressed during tissue remodeling and inflammation, holds promise for advancing FGS by specifically highlighting tumors.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
Background: Alzheimer's disease (AD) is a neurological disorder marked by progressive cognitive decline, memory deficits, and neuronal cell loss (Knopman, 2021). A brain region significantly impacted by the progression of AD is the subiculum, a structure responsible for spatial navigation, cognitive processes, and the modulation of emotional and affective behaviors within the hippocampus (Fanselow and Dong, 2010). Although subiculum cell loss has been well-established as an early indicator of AD (Carlesimo et al.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Buenos Aires, Buenos Aires, Argentina.
Background: Alzheimer's disease is characterized by the accumulation of aggregated amyloid peptides in the brain parenchyma and in the walls of brain vessels. The hippocampus - a complex brain structure that plays a key role in learning and memory - has been implicated in the disease. However, there is limited data on vascular changes during the pathological degeneration of Alzheimer's disease in this vulnerable structure, which has distinctive vascular features.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Toronto, Toronto, ON, Canada.
Background: Drug discovery efforts in neurological diseases, such as Alzheimer's disease (AD), have had particularly poor outcomes due to the lack of models that capture the cerebral vasculature. There is an unmet need to develop models that capture the physiological challenge of overcoming the blood-brain barrier (BBB) and impacts of blood flow-induced shear stress. In this work, we use a microfluidic platform to model the cerebral vasculature in familial AD (fAD) using patient-derived brain endothelial-like cells (BECs) and neurons.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610065, China.
Determining mutations in the kinase domain of the epidermal growth factor receptor (EGFR) is critical for the effectiveness of EGFR tyrosine kinase inhibitors (TKIs) in lung cancer. Yet, DNA-based sequencing analysis of tumor samples is time-consuming and only provides gene mutation information on EGFR, making it challenging to design effective EGFR-TKI therapeutic strategies. Here, we present a new image-based method involving the rational design of a quenched probe based on EGFR-TKI to identify mutant proteins, which permits specific and "no-wash" real-time imaging of EGFR in living cells only upon covalent targeting of the EGFR kinase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!