Pertussis is occurring in highly vaccinated populations, suggesting insufficient protective memory CD4(+) T cells to Bordetella (B.) pertussis. P.69 Pertactin (P.69 Prn) is an important virulence factor of B. pertussis, and P.69 Prn7-24 is an immunodominant CD4(+) T cell epitope in mice and broadly recognized in humans. P.69 Prn7-24 peptide-MHC II tetramers (DRB4*0101/IVKT) were designed to ex vivo interrogate the presence and differentiation state of P.69 Prn7-24 specific CD4(+) T cells in six symptomatic pertussis cases. Cases with relatively more CD45RA(-)CCR7(+) central memory CD4(+)DRB4*0101/IVKT(+) T cells secreted Th1 cytokines, while cases with more CD45RA(-)CCR7(-) effector memory CD4(+)DRB4*0101/IVKT(+) T cells secreted both Th1 and Th2 cytokines upon peptide stimulation. CD45RA(+)CCR7(-) terminal differentiation pattern was associated with low or non-functionality based on cytokine secretion. This study provides proof of principle for further peptide-MHC II tetramer guided approaches in the elucidation of limited immunological memory to B. pertussis and the resurgence of pertussis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clim.2015.02.009DOI Listing

Publication Analysis

Top Keywords

cd4+ cells
12
p69 prn7-24
12
peptide-mhc tetramer
8
pertussis p69
8
memory cd4+drb4*0101/ivkt+
8
cd4+drb4*0101/ivkt+ cells
8
cells secreted
8
secreted th1
8
pertussis
6
cells
5

Similar Publications

Recent studies have suggested that sVEGFR3 is involved in cardiac diseases by regulating lymphangiogenesis; however, results are inconsistent. The aim of this study was to investigate the function and mechanism of sVEGFR3 in myocardial ischemia/reperfusion injury (MI/RI). sVEGFR3 effects were evaluated in vivo in mice subjected to MI/RI, and in vitro using HL-1 cells exposed to oxygen-glucose deprivation/reperfusion.

View Article and Find Full Text PDF

Aim: Regulatory T cells (Tregs) play a crucial role in the development and progression of atherosclerosis. However, the specific association between Treg immune traits and atherosclerosis and related cardiovascular diseases remains unclear, impeding their potential for clinical therapeutic application.

Method: Fifty-eight Treg-related immune traits were obtained from the latest summary level genome-wide association study, which included 3,757 individuals from Sardinia.

View Article and Find Full Text PDF

Potential therapeutic effect of dimethyl fumarate on Treg/Th17 cell imbalance in biliary atresia.

Clin Immunol

January 2025

Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, China. Electronic address:

The imbalance between Tregs and proinflammatory Th17 cells in children with biliary atresia (BA) causes immune damage to cholangiocytes. Dimethyl fumarate (DMF), an immunomodulatory drug, regulates the Treg/Th17 balance in diseases like multiple sclerosis (MS). This study explores DMF's effect on Treg/Th17 balance in BA and its potential mechanism.

View Article and Find Full Text PDF

Background: Circulating levels of the female hormone estrogen has been associated with the development of Parkinson's disease (PD), although the underlying mechanism remains unclear. Immune homeostasis mediated by peripheral regulatory T cells (Treg) is a crucial factor in PD. The aim of this study was to explore the effects of estrogen deficiency on neuroinflammation and neurodegeneration in a rodent model of PD, with particular reference to Treg.

View Article and Find Full Text PDF

Myasthenia gravis (MG) is a T cell-dependent, B cell-mediated disorder strongly associated with antigen presentation by dendritic cells (DCs). In MG, mucosal tolerance is linked to increased expression of TGF-β mRNA in monocytes. Additionally, monocytic myeloid-derived suppressor cells (M-MDSCs) exhibit negative immunomodulatory effects by suppressing autoreactive T and B cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!