Previous studies have shown that degeneration of retinal capillaries occurs following N-methyl-D-aspartate (NMDA)-induced retinal neurotoxicity, but it is unclear whether vasodilatory mechanisms are altered in retinal blood vessels. The purpose of the present study was to determine whether retinal vasodilator responses are affected in a rat model of NMDA-induced retinal damage. At 14 days after a single intravitreal injection of NMDA (200 nmol), retinal vasodilator responses were assessed by measuring the diameter of retinal arterioles in fundus images. Acetylcholine-induced vasodilation of retinal arterioles was significantly reduced in NMDA-treated retinas, whereas retinal vasodilatory effects of the nitric oxide (NO) donor NOR3, the β2-adrenoceptor agonist salbutamol, and the β3-adrenoceptor agonist CL316243 were unaltered. The vasodilator response to acetylcholine observed under the combined blockade of NO synthase and cyclooxygenase with N(G)-nitro-L-arginine methyl ester (30 mg/kg, i.v.) plus indomethacin (5 mg/kg, i.v.), possibly an endothelium-derived hyperpolarizing factor-mediated response, was also reduced. These results suggest that endothelium-dependent vasodilatory mechanisms in retinal blood vessels are impaired in the rat model of NMDA-induced retinal degeneration. Glutamate-induced neurotoxicity is implicated in several retinal diseases; therefore, abnormal retinal circulation would contribute to the progression of the diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphs.2014.12.014DOI Listing

Publication Analysis

Top Keywords

nmda-induced retinal
16
retinal
14
retinal vasodilator
12
rat model
12
model nmda-induced
12
vasodilator response
8
response acetylcholine
8
retinal degeneration
8
vasodilatory mechanisms
8
retinal blood
8

Similar Publications

Purpose: Astragalus polysaccharide (APS), a water-soluble heteropolysaccharide, possesses immunomodulatory, anti-inflammatory, and cardioprotective properties. This study investigates the neuroprotective potential of APS in a model of -Methyl-aspartic acid (NMDA)-induced retinal neurodegeneration, aiming to explore its potential as a treatment for retinal degenerative diseases.

Methods: Retinal function was evaluated using electroretinography (ERG), optomotor reflex (OMR), and flash visual evoked potentials (FVEP).

View Article and Find Full Text PDF

Retinal neurodegeneration, characterized by retinal ganglion cell (RGC) death, is a leading cause of vision impairment and loss in blind diseases, such as glaucoma. Müller cells play crucial roles in maintaining retinal homeostasis. Thus, dysfunction of Müller cells has been implicated as one of the causes of retinal diseases.

View Article and Find Full Text PDF

Objective: This investigation was to determine the relationship between changes in the expression levels of miR-134 and the E2F transcription factor 6 (E2F6) in mediating control of apoptosis in N-methyl-D-aspartate (NMDA)-induced glaucomatous mice.

Methods: Morphological and structural changes were quantitatively analyzed along with apoptosis in the retinal ganglion cell (RGC) layer, internal plexiform layer and RGCs. Glaucomatous RGCs were transfected, and cell viability and apoptosis were examined.

View Article and Find Full Text PDF
Article Synopsis
  • NMDA-induced retinal damage was studied in rhesus monkeys to better understand the effects compared to previous rodent studies.
  • After injecting NMDA or saline into the eyes of four monkeys, researchers observed both structural and functional changes in the retina over 60 days.
  • The findings showed an initial retinal thickening followed by thinning, similar to glaucoma patterns, along with a significant loss of retinal ganglion cells, indicating the NMDA model's relevance for future retinal damage research.
View Article and Find Full Text PDF

Small extracellular vesicles derived from microRNA-22-3p-overexpressing mesenchymal stem cells protect retinal ganglion cells by regulating MAPK pathway.

Commun Biol

July 2024

Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China.

Glaucoma is the leading cause of irreversible blindness and is characterized by progressive retinal ganglion cell (RGC) loss and retinal nerve fiber layer thinning. Currently, no existing treatment is effective for the preservation of RGCs. MicroRNA-22-3p (miR22) and small extracellular vesicles derived from mesenchymal stem cells (MSC-sEVs) have neuroprotective effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!