Comparative biochemical methane potential of paragrass using an unacclimated and an acclimated microbial consortium.

Bioresour Technol

The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand; The Research and Technology Center for Renewable Products and Energy, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand; Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand. Electronic address:

Published: May 2015

The effect of inoculum sources on the anaerobic digestion of paragrass was investigated. Two types of sludge were used as the inoculums: an anaerobic sludge obtained from a domestic wastewater treatment plant (OS) and a sludge acclimated to fibrous substrates in raw palm oil mill effluent (AMC). Microbial activity assays showed that the AMC had hydrolytic and acetogenic activities two times greater than the activities of the OS. In addition, the production of methane from acetate by the AMC occurred without a lag phase, while it took 8 days for the OS to start producing methane from the same substrate. The biochemical methane potential after 80 days digestion was 316 ml STP/g VS(added) using the AMC, and 277 ml STP/g VS(added) using the OS. The methane potential of the paragrass was estimated to be 3337 Nm(3) CH4/ha a.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2015.02.049DOI Listing

Publication Analysis

Top Keywords

methane potential
12
biochemical methane
8
potential paragrass
8
stp/g vsadded
8
methane
5
comparative biochemical
4
paragrass unacclimated
4
unacclimated acclimated
4
acclimated microbial
4
microbial consortium
4

Similar Publications

Partial oxidation of methane (POM) is achieved by forming air-methane microbubbles in saltwater to which an alternating electric field is applied using a copper oxide foam electrode. The solubility of methane is increased by putting it in contact with water containing dissolved KCl or NaCl (3%). Being fully dispersed as microbubbles (20-40 µm in diameter), methane reacts more fully with hydroxyl radicals (OH·) at the gas-water interface.

View Article and Find Full Text PDF

The speciation and thermal transformation characteristics of fluorine and chlorine in industrial wastes.

Environ Technol

January 2025

China State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.

The study investigated the chlorine and fluorine contents in three types of industrial solid waste: textile, plastic, and paper waste, utilizing various analytical methods. Significant variations in the proportions of organic and inorganic chlorine were observed among the waste types. During heat treatment, the majority of chlorine converts to a volatile state, with fixed chlorine content showing a correlation with organic chlorine.

View Article and Find Full Text PDF

Addressing methane emissions across the liquefied natural gas (LNG) supply chain is key to reducing climate impacts of LNG. Actions to address methane emissions have emphasized the importance of the use of measurement-informed emissions inventories given the systematic underestimation in official greenhouse gas (GHG) emission inventories. Despite significant progress in field measurements of GHG emissions across the natural gas supply chain, no detailed measurements at US liquefaction terminals are publicly available.

View Article and Find Full Text PDF

The economic feasibility of low-carbon ammonia production pathways, such as steam methane reforming with carbon capture and storage, biomass gasification, and electrolysis, is assessed under various policy frameworks, including subsidies, carbon pricing, and renewable hydrogen regulations. Here, we show that employing a stochastic techno-economic analysis at the plant level and a net present value approach under the US Inflation Reduction Act reveals that carbon capture and biomass pathways demonstrate strong economic potential due to cost-effectiveness and minimal public support needs. Conversely, the electrolytic pathway faces significant economic challenges due to higher costs and lower efficiency.

View Article and Find Full Text PDF

Influence of forage-to-concentrate ratio on the effects of a radiata pine bark extract on methane production and fermentation using the rumen simulation technique.

Animal

December 2024

Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Campus Chillán, Chillán 3812120, Chile. Electronic address:

Climate change and food safety standards have intensified research into plant-based compounds as alternatives to dietary supplements in animal feed. These compounds can reduce enteric methane (CH) emissions and the formation of ruminal ammonia. This study investigated the effects of radiata pine bark extract (PBE) supplementation on CH production, ruminal fermentation parameters, and nutrient disappearance using the rumen simulation technique in diets with different forage-to-concentrate (F:C) ratios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!