The halogen bonded complexes between six carbonyl bases and molecular chlorine are investigated theoretically. The interaction energies calculated at the CCSD(T)/aug-cc-pVTZ level range between -1.61 and -3.50 kcal mol(-1). These energies are related to the ionization potential, proton affinity, and also to the most negative values (V(s,min)) on the electrostatic potential surface of the carbonyl bases. A symmetry adapted perturbation theory decomposition of the energies has been performed. The interaction results in an elongation of the Cl-Cl bond and a contraction of the CF and CH bonds accompanied by a blue shift of the ν(CH) vibrations. The properties of the Cl2 molecules are discussed as a function of the σ*(Cl-Cl) occupation, the hybridization, and the occupation of the Rydberg orbitals of the two chlorine atoms. Our calculations predict a large enhancement of the infrared and Raman intensities of the ν(Cl-Cl) vibration on going from isolated to complexed Cl2.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.23860DOI Listing

Publication Analysis

Top Keywords

carbonyl bases
12
halogen bonded
8
bonded complexes
8
complexes carbonyl
8
bases molecular
8
molecular chlorine
8
theoretical investigation
4
investigation halogen
4
chlorine halogen
4
chlorine investigated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!