Glycosylation alterations in lung and brain cancer.

Adv Cancer Res

Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, California, USA; Department of Pathology, University of California, San Francisco, California, USA. Electronic address:

Published: December 2015

Alterations in glycosylation are common in cancer and are thought to contribute to disease. Lung cancer and primary malignant brain cancer, most commonly glioblastoma, are genetically heterogeneous diseases with extremely poor prognoses. In this review, we summarize the data demonstrating that glycosylation is altered in lung and brain cancer. We then use specific examples to highlight the diverse roles of glycosylation in these two deadly diseases and illustrate shared mechanisms of oncogenesis. In addition to alterations in glycoconjugate biosynthesis, we also discuss mechanisms of postsynthetic glycan modification in cancer. We suggest that alterations in glycosylation in lung and brain cancer provide novel tumor biomarkers and therapeutic targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6080207PMC
http://dx.doi.org/10.1016/bs.acr.2014.11.007DOI Listing

Publication Analysis

Top Keywords

brain cancer
16
lung brain
12
cancer alterations
8
alterations glycosylation
8
cancer
7
glycosylation
5
glycosylation alterations
4
lung
4
alterations lung
4
brain
4

Similar Publications

We report a case of Acanthamoeba infection in an HCT recipient with steroid-refractory GVHD. We highlight the multiple challenges that free-living ameba infections present to the clinician, the clinical laboratory, transplant infectious disease for review, hospital epidemiology if nosocomial transmission is considered, and public health officials, as exposure source identification can be a significant challenge. Transplant physicians should include Acanthamoeba infections in their differential diagnosis of a patient with skin, sinus, lung, and/or brain involvement.

View Article and Find Full Text PDF

Histologic transformation from non-small cell to small cell lung cancer (SCLC) is a resistance mechanism to immune checkpoint inhibitors. We report herein a case of lung adenocarcinoma who developed liver and brain metastases during adjuvant atezolizumab therapy. The patient underwent a craniotomy to resect a brain metastasis, which was pathologically diagnosed as SCLC.

View Article and Find Full Text PDF

Effects of Aging on Glucose and Lipid Metabolism in Mice.

Aging Cell

December 2024

Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

Aging is accompanied by multiple molecular changes that contribute to aging associated pathologies, such as accumulation of cellular damage and mitochondrial dysfunction. Tissue metabolism can also change with age, in part, because mitochondria are central to cellular metabolism. Moreover, the cofactor NAD, which is reported to decline across multiple tissues during aging, plays a central role in metabolic pathways such as glycolysis, the tricarboxylic acid cycle, and the oxidative synthesis of nucleotides, amino acids, and lipids.

View Article and Find Full Text PDF

Background: Lung transplantation is a viable lifesaving option for patients with diffuse pulmonary arteriovenous malformations (AVMs). We present a case of diffuse pulmonary AVMs associated with juvenile polyposis and hereditary hemorrhagic telangiectasia (JP-HHT) that was successfully managed by lung transplantation.

Case Presentation: A 19-year-old woman developed severe hypoxemia due to pulmonary AVMs diagnosed at 4 years of age.

View Article and Find Full Text PDF

Copper-coordination driven brain-targeting nanoassembly for efficient glioblastoma multiforme immunotherapy by cuproptosis-mediated tumor immune microenvironment reprogramming.

J Nanobiotechnology

December 2024

Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, the Hainan Branch of National Clinical Research Center for Cancer, the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China.

Limited drug accumulation and an immunosuppressive microenvironment are the major bottlenecks in the treatment of glioblastoma multiforme (GBM). Herein, we report a copper-coordination driven brain-targeting nanoassembly (TCe6@Cu/TP5 NPs) for site-specific delivery of therapeutic agents and efficient immunotherapy by activating the cGAS-STING pathway and downregulating the expression of PD-L1. To achieve this, the mitochondria-targeting triphenylphosphorus (TPP) was linked to photosensitizer Chlorin e6 (Ce6) to form TPP-Ce6 (TCe6), which was then self-assembled with copper ions and thymopentin (TP5) to obtain TCe6@Cu/TP5 NPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!