Highly sensitive colorimetric sensor for Hg(2+) detection based on cationic polymer/DNA interaction.

Biosens Bioelectron

School of Biotechnology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China. Electronic address:

Published: July 2015

The detection of ultralow concentrations of mercury is a currently significant challenge. Here, a novel strategy is proposed: the colorimetric detection of Hg(2+) based on the aggregation of gold nanoparticles (AuNPs) driven by a cationic polymer. In this three-component system, DNA combines electrostatically with phthalic diglycol diacrylate (PDDA) in a solution of AuNPs. In the presence of Hg(2+), thymine (T)-Hg(2+)-T induced hairpin turns are formed in the DNA strands, which then do not interact with PDDA, enabling the freed PDDA to subsequently facilitate aggregation of the AuNPs. Thus, according to the change in color from wine-red to blue-purple upon AuNPs aggregation, a colorimetric sensor is established to detect Hg(2+). Under optimal conditions, the color change is clearly seen with the naked eye. A linear range of 0.25-500nM was obtained by absorption spectroscopy with a detection limit of approximately 0.15nM. Additionally, the proposed method shows high selectivity toward Hg(2+) in the presence of other heavy metal ions. Real sample analysis was evaluated with the use of lake water and the results suggest good potential for practical application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2015.02.018DOI Listing

Publication Analysis

Top Keywords

colorimetric sensor
8
hg2+
5
highly sensitive
4
sensitive colorimetric
4
sensor hg2+
4
detection
4
hg2+ detection
4
detection based
4
based cationic
4
cationic polymer/dna
4

Similar Publications

By a simple condensation reaction, the receptor with anthraquinone moiety was synthesized and its sensing properties were explored in the anion sensing studies via colorimetric, UV-vis studies, fluorescence studies, and DFT calculations. The synthesized receptor senses both acetate and hypochlorite ions in DMSO medium. By the addition of all anions into the receptor the colour change was observed from pink to light purple colour for acetate ion and pink to light blue for hypochlorite ion.

View Article and Find Full Text PDF

This study focuses on developing an affordable and cost-effective colorimetric solid-state optical sensor for target-specific naked-eye detection of Pb, offering significant potential for real-time environmental monitoring and public health applications. The indigenously developed porous polymer monolithic template, poly(lauryl methacrylate-co-ethylene glycol dimethacrylate) (poly(LMC-co-EGDMA) is infused with a chromoionophoric probe, i.e.

View Article and Find Full Text PDF

Volatile sulfur compounds (VSCs) are prevalent human biogases detectable in individuals with periodontal disease; therefore, measuring VSC gases in human breath can yield significant, noninvasive diagnostic information indicative of such diseases. In this study, we developed a gas sensor with selective and enhanced sensing capabilities for VSCs methyl mercaptan and hydrogen sulfide. This sensor comprises a cellulose paper substrate impregnated with 2,2'-dithiobis(5-nitropyridine) and sodium acetate.

View Article and Find Full Text PDF

Non-destructive color sensors are widely applied for rapid analysis of various biological and healthcare point-of-care applications. However, existing red, green, blue (RGB)-based color sensor systems, relying on the conversion to human-perceptible color spaces like hue, saturation, lightness (HSL), hue, saturation, value (HSV), as well as cyan, magenta, yellow, key (CMYK) and the CIE L*a*b* (CIELAB) exhibit limitations compared to spectroscopic methods. The integration of machine learning (ML) techniques presents an opportunity to enhance data analysis and interpretation, enabling insights discovery, prediction, process automation, and decision-making.

View Article and Find Full Text PDF

A simple and colorimetric method utilizing cell-free toehold switch sensors for the detection of Chlamydia trachomatis, Ureaplasma urealyticum and Neisseria gonorrhoeae.

Anal Chim Acta

February 2025

Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, 350004, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, 350004, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350207, China. Electronic address:

Background: Sexually transmitted infections (STIs) rank among the most prevalent acute infectious conditions and remain a major global public health concern. Notable STI pathogens include Chlamydia trachomatis (CT), Ureaplasma urealyticum (UU), and Neisseria gonorrhoeae (NG). Early detection and diagnosis are crucial for controlling the spread of STIs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!