Preparation and chromatographic evaluation of a newly designed steviol glycoside modified-silica stationary phase in hydrophilic interaction liquid chromatography and reversed phase liquid chromatography.

J Chromatogr A

Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China; Key Lab of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China. Electronic address:

Published: April 2015

A diterpene glycoside compound, rebaudioside A (commonly abbreviated as RA), was immobilized onto porous silica surface through "thiol-ene" click chemistry strategy. The successful immobilization of the RA on the silica support was confirmed by FT-IR and elemental analysis. Chromatographic characteristics of the new stationary phase, named Click TE-RA, were evaluated by a set of diverse analytes such as carbohydrates, nucleosides, and organic acids in hydrophilic interaction liquid chromatography (HILIC) mode. The effects of water content, buffer pH and concentration were investigated and a typical HILIC retention feature of Click TE-RA was observed at high organic modifier content. The Click TE-RA stationary phase was further studied by a series of glycoside compounds. Tunable retention mechanisms from hydrophilic to hydrophobic interactions were observed. Separation of very polar compounds including oligosaccharides, nucleic acid bases and nucleosides using Click TE-RA in HILIC mode was successfully accomplished. In addition, separation of saponins both in HILIC and reversed-phase liquid chromatography (RPLC) modes was performed, demonstrating the presence of orthogonality between two different modes on Click TE-RA column. The multiple interactions induced by polar sugar group and hydrophobic aglycone group allowed this Click TE-RA to serve as a multi-mode stationary phase in two-dimensional liquid chromatography.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2015.02.019DOI Listing

Publication Analysis

Top Keywords

click te-ra
24
liquid chromatography
20
stationary phase
16
hydrophilic interaction
8
interaction liquid
8
hilic mode
8
click
7
te-ra
6
phase
5
liquid
5

Similar Publications

Preparation and chromatographic evaluation of a newly designed steviol glycoside modified-silica stationary phase in hydrophilic interaction liquid chromatography and reversed phase liquid chromatography.

J Chromatogr A

April 2015

Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China; Key Lab of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China. Electronic address:

A diterpene glycoside compound, rebaudioside A (commonly abbreviated as RA), was immobilized onto porous silica surface through "thiol-ene" click chemistry strategy. The successful immobilization of the RA on the silica support was confirmed by FT-IR and elemental analysis. Chromatographic characteristics of the new stationary phase, named Click TE-RA, were evaluated by a set of diverse analytes such as carbohydrates, nucleosides, and organic acids in hydrophilic interaction liquid chromatography (HILIC) mode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!