Traveling wave solutions of the nonlinear acoustic wave equation are obtained for the fundamental and second harmonic resonances of a fluid-filled cavity. The solutions lead to the development of a non-autonomous toy model for cavity oscillations. Application of the Melnikov method to the model equation predicts homoclinic bifurcation of the Smale horseshoe type leading to a cascade of period doublings with increasing drive displacement amplitude culminating in chaos. The threshold value of the drive displacement amplitude at tangency is obtained in terms of the acoustic drive frequency and fluid attenuation coefficient. The model prediction of subharmonic generation leading to chaos is validated from acousto-optic diffraction measurements in a water-filled cavity using a 5 MHz acoustic drive frequency and from the measured frequency spectrum in the bifurcation cascade regime. The calculated resonant threshold amplitude of 0.2 nm for tangency is consistent with values estimated for the experimental set-up. Experimental evidence for the appearance of a stable subharmonic beyond chaos is reported.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4913521 | DOI Listing |
Ultrasonics
December 2024
Department of Biomedical Engineering, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China; Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China. Electronic address:
Submicron ultrasound contrast agents hold great potential to extend the bubble-mediated theranostics beyond the vasculature, but their acoustic response and the interaction effects between them remain poorly understood. This study set out to numerically examine the interaction effects on the subharmonic oscillations of nanobubbles and the resultant acoustic emissions under subharmonic resonance conditions. Results showed that a negative correlation between bubble size and subharmonic resonance frequency is readily obtained from the radius response curves.
View Article and Find Full Text PDFJ Gastroenterol
December 2024
Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-Cho, Shiwa-Gun, Yahaba, Iwate, 028-3694, Japan.
Ultrasound Med Biol
February 2025
Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA. Electronic address:
Sci Rep
October 2024
Institute for Mechanical Systems, ETH Zürich, Leonhardstrasse 21, 8092, Zürich, Switzerland.
Complex behavior in nonlinear dynamical systems often arises from resonances, which enable intricate energy transfer mechanisms among modes that otherwise would not interact. Theoretical, numerical and experimental methods are available to study such behavior when the resonance arises among modes of the linearized system. Much less understood are, however, resonances arising from nonlinear modal interactions, which cannot be detected from a classical linear analysis.
View Article and Find Full Text PDFJ Gastroenterol
October 2024
Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-Cho, Shiwa-Gun, Yahaba, Iwate, 028-3694, Japan.
Background: Subharmonic-aided pressure estimation (SHAPE) is a technique for determining changes in ambient pressure. We aimed to analyze a novel SHAPE integrated into ultrasound diagnostic equipment to predict patients with liver cirrhosis at high risk of esophagogastric varices (EV).
Methods: This prospective study included 111 patients with liver cirrhosis diagnosed between 2020 and 2023.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!