Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report on the development of a new photoactive material via titania (TiO2) nanoparticle deposition on free-standing aligned carbon nanotube (CNT) sheets. Controlling homogeneous dispersion of negatively charged TiO2 nanoparticles, achieved by adjusting pH higher than the point of zero charge (PZC), influenced electrochemical deposition of TiO2 on CNT sheets substrate. Varying deposition time with constant voltage, 5 V allowed different thickness of TiO2 to be deposited layer on the CNT sheets. The thickness and morphology of CNT-TiO2 sheets was verified by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Electrochemical experiments show that diffusion coefficient of Fe(CN)6(3-) was 5.56×10(-6) cm(2) s(-1) at pristine CNT sheets and 2.19×10(-6) cm(2) s(-1) at the CNT-TiO2 sheets. Photocatalytic activity for CNT-TiO2 sheets exhibits high photocurrent density (when deposition time=30 min, 4.3 μA cm(-2) in N2, 13.4 μA cm(-2) in CO2). This paper proved a possibility to use CNT-TiO2 sheets based on highly-aligned CNT sheets substrate as new photoactive material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2015.02.022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!