Treadmill running restores MDMA-mediated hyperthermia prevented by inhibition of the dorsomedial hypothalamus.

Brain Res

Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA. Electronic address:

Published: May 2015

The contribution of exercise to hyperthermia mediated by MDMA is not known. We recently showed that inhibiting the dorsomedial hypothalamus (DMH) attenuated spontaneous locomotion and hyperthermia and prevented deaths in rats given MDMA in a warm environment. The goal of this study was to confirm that restoring locomotion through a treadmill would reverse these effects thereby confirming that locomotion mediated by the DMH contributes to MDMA-mediated hyperthermia. Rats were randomized to receive bilateral microinjections, into the region of the DMH, of muscimol (80pmol/100nl) or artificial CSF followed by a systemic dose of either MDMA (7.5mg/kg, i.v.) or saline. Immediately after the systemic injection, rats were placed on a motorized treadmill maintained at 32°C. Rats were exercised at a fixed speed (10m/min) until their core temperature reached 41°C. Our results showed that a fixed exercise load abolished the decreases in temperature and mortality, seen previously with inhibition of the DMH in freely moving rats. Therefore, locomotion mediated by neurons in the DMH is critical to the development of hyperthermia from MDMA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388810PMC
http://dx.doi.org/10.1016/j.brainres.2015.02.037DOI Listing

Publication Analysis

Top Keywords

mdma-mediated hyperthermia
8
hyperthermia prevented
8
dorsomedial hypothalamus
8
locomotion mediated
8
hyperthermia
5
dmh
5
rats
5
treadmill running
4
running restores
4
restores mdma-mediated
4

Similar Publications

The increased use of the stimulant drug, 3,4-methylenedioxymethamphetamine (MDMA), more commonly known as Ecstasy, Molly or X, has been linked to the development of life-threatening hyperthermia in human and animal models. The current study aimed to investigate the role of the gut-adrenal axis in MDMA-induced hyperthermia by assessing the influence of the acute exogenous supplementation with norepinephrine (NE) or corticosterone (CORT) to adrenalectomized (ADX) rats following MDMA administration. MDMA (10 mg/kg, sc) resulted in significant increase of body temperature in SHAM animals compared to ADX animals at 30-, 60- and 90-min timepoints post-MDMA treatment.

View Article and Find Full Text PDF

Hyperthermia induced by 3,4-methylenedioxymethamphetamine (MDMA) can be life-threatening. Here, we investigate the role of the gut microbiome and TGR5 bile acid receptors in MDMA-mediated hyperthermia. Fourteen days prior to treatment with MDMA, male Sprague-Dawley rats were provided water or water treated with antibiotics.

View Article and Find Full Text PDF

Fatal hyperthermia as a result of 3,4-methylenedioxymethamphetamine (MDMA) use involves non-esterified free fatty acids (NEFA) and the activation of mitochondrial uncoupling proteins (UCP). NEFA gain access into skeletal muscle via specific transport proteins, including fatty acid translocase (FAT/CD36). FAT/CD36 expression is known to increase following chronic exercise.

View Article and Find Full Text PDF

Treadmill running restores MDMA-mediated hyperthermia prevented by inhibition of the dorsomedial hypothalamus.

Brain Res

May 2015

Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA. Electronic address:

The contribution of exercise to hyperthermia mediated by MDMA is not known. We recently showed that inhibiting the dorsomedial hypothalamus (DMH) attenuated spontaneous locomotion and hyperthermia and prevented deaths in rats given MDMA in a warm environment. The goal of this study was to confirm that restoring locomotion through a treadmill would reverse these effects thereby confirming that locomotion mediated by the DMH contributes to MDMA-mediated hyperthermia.

View Article and Find Full Text PDF

3,4-(±)-Methylenedioxymethamphetamine (MDMA, Ecstasy) is a ring-substituted amphetamine derivative with potent psychostimulant properties. The neuropharmacological effects of MDMA are biphasic in nature, initially causing synaptic monoamine release, primarily of serotonin (5-HT). Conversely, the long-term effects of MDMA manifest as prolonged depletions in 5-HT, and reductions in 5-HT reuptake transporter (SERT), indicative of serotonergic neurotoxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!