Regeneration of sensory but not motor axons following visceral nerve injury.

Exp Neurol

Department of Anatomy and Neuroscience, The University of Melbourne, Victoria 3010, Australia.

Published: April 2015

Following peripheral nerve injury, restoration of function may occur via the regeneration of injured axons or compensatory sprouting of spared axons. Injury to visceral nerves that control urogenital organs is a common consequence of pelvic surgery, however their capacity to reinnervate organs is poorly understood. To determine if and how sensory and motor connections to the bladder are re-established, a novel surgical model of visceral nerve injury was performed unilaterally in adult male Wistar rats. Bladder-projecting motor and sensory neurons in pelvic ganglia and lumbosacral dorsal root ganglia, respectively, were identified and characterised by retrograde tracing and immunofluorescence. Application of tracers ipsi- and contralateral to injury distinguished the projection pathways of new connections in the bladder. In naive animals, the majority of sensory and motor neurons project ipsilaterally to the bladder, while ~20 % project contralaterally and ~5 % bilaterally. Injured axons of motor neurons were unable to regenerate by 4weeks after transection. In contrast, by this time many injured sensory neurons regrew axons to reform a substantial plexus within the detrusor and suburothelial tissues. These regeneration responses were also indicated by upregulation of activating transcription factor-3 (ATF-3), which was sustained in motor neurons but transient in sensory bladder-projecting neurons. Axotomy had little or no effect on the survival of bladder-projecting sensory and motor neurons. We also found evidence that uninjured motor and sensory neurons develop additional projections to the denervated bladder tissue and return connectivity, likely by undergoing compensatory growth. In conclusion, our results show that visceral sensory and motor neurons have a different capacity to regenerate axons following axotomy, however in both components of the circuit uninjured bladder neurons spontaneously grow new axon collaterals to replace the lost terminal field within the organ. For a full functional recovery, understanding the environmental and cellular mechanisms that reduce the ability of pelvic ganglion cells to undergo axonal regeneration is needed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2015.02.026DOI Listing

Publication Analysis

Top Keywords

sensory motor
20
motor neurons
20
nerve injury
12
sensory neurons
12
neurons
10
motor
9
visceral nerve
8
injured axons
8
sensory
8
connections bladder
8

Similar Publications

Ischemic stroke is a major cause of adult disability. Early treatment with thrombolytics and/or thrombectomy can significantly improve outcomes; however, following these acute interventions, treatment is limited to rehabilitation therapies. Thus, the identification of therapeutic strategies that can help restore brain function in the post-acute phase remains a major challenge.

View Article and Find Full Text PDF

Speech production engages a distributed network of cortical and subcortical brain regions. The supplementary motor area (SMA) has long been thought to be a key hub in coordinating across these regions to initiate voluntary movements, including speech. We analyzed direct intracranial recordings from 115 patients with epilepsy as they articulated a single word in a subset of trials from a picture-naming task.

View Article and Find Full Text PDF

Research on brain aging using resting-state functional magnetic resonance imaging (rs-fMRI) has typically focused on comparing "older" adults to younger adults. Importantly, these studies have often neglected the middle age group, which is also significantly impacted by brain aging, including by early changes in motor, memory, and cognitive functions. This study aims to address this limitation by examining the resting state networks in middle-aged adults via an exploratory whole-brain ROI-to-ROI analysis.

View Article and Find Full Text PDF

Spinal cord injury (SCI) frequently results in persistent motor, sensory, or autonomic dysfunction, and the outcomes are largely determined by the location and severity of the injury. Despite significant technological progress, the intricate nature of the spinal cord anatomy and the difficulties associated with neuroregeneration make full recovery from SCI uncommon. This review explores the potential of artificial intelligence (AI), with a particular focus on machine learning, to enhance patient outcomes in SCI management.

View Article and Find Full Text PDF

Background: In epidural anaesthesia, the addition of an adjuvant to local anaesthetics enhances the efficacy, thereby providing increased duration and intensity of blockade in lower limb surgeries. The aim was to compare the efficacy, onset, and duration of sensory and motor blockade; haemodynamic changes; and sedative and analgesic effects of nalbuphine, clonidine, and dexmedetomidine as an adjuvant to ropivacaine in epidural anaesthesia.

Methodology: A prospective, randomised, double-blind study among 90 patients after taking consent was divided into three groups (30 patients each; Group D received 15 ml of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!