The cholesteryl ester transfer protein (CETP) plays a crucial role in high-density lipoprotein (HDL) metabolism. Genetic variants that alter CETP concentration may cause significant alterations in HDL-cholesterol (HDL-C) concentration. In this case-control study, we analyzed the genotype frequencies of CETP Taq1B polymorphisms in coronary artery disease patients (CAD; n=210) and controls (n=100). We analyzed the role of the CETP Taq1B variant in severity of CAD, and its association with plasma lipids and CETP concentration. DNA was extracted from 310 patients undergoing coronary angiography. The Taq1B polymorphism was genotyped using polymerase chain reaction-restriction fragment length polymorphism (RFLP) analysis. Lipid concentrations were measured by an auto analyzer and CETP level by a commercial enzyme-linked immunosorbent assay (ELISA) kit. In our study population, the B2 allele frequency was higher in control subjects than patients with single, double or triple vessel disease. B2B2 genotype carriers had a significantly higher high-density lipoprotein cholesterol (HDL-C) concentration than those with the B1B1 genotype in controls (51.93±9.47versus 45.34±9.93; p<0.05) and in CAD patients (45.52±10.81 versus 40.38±9.12; p<0.05). B2B2 genotype carriers had a significantly lower CETP concentration than those with the B1B1 genotype in controls (1.39±0.58 versus 1.88±0.83; p< 0.05) and in CAD patients (2.04±1.39versus 2.81±1.68; p< 0.05). Our data suggest that the B2 allele is associated with higher concentrations of HDL-C and lower concentrations of CETP, which confer a protective effect on coronary artery disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4365681 | PMC |
http://dx.doi.org/10.17305/bjbms.2015.157 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!