Apoptosis can be induced by either death receptors on the plasma membrane (extrinsic pathway) or the damage of the genome and/or cellular organelles (intrinsic pathway). Previous studies suggest that cellular caspase 8 (FLICE)-like inhibitory protein (c-FLIP) promotes cell survival in death receptor-induced apoptosis pathway in T lymphocytes. Independent of death receptor signaling, mitochondria sense apoptotic stimuli and mediate the activation of effector caspases. Whether c-FLIP regulates mitochondrion-dependent apoptotic signals remains unknown. In this study, c-FLIP gene was deleted in mature T lymphocytes in vitro, and the role of c-FLIP protein in intrinsic apoptosis pathway was studied. In resting T cells treated with the intrinsic apoptosis inducer, c-FLIP suppressed cytochrome c release from mitochondria. Bim-deletion rescued the enhanced apoptosis in c-FLIP-deficient T cells, whereas inhibition of caspase 8 did not. Different from activated T cells, there was no necroptosis or increase in reactive oxygen species in c-FLIP-deficient resting T cells. These data suggest that c-FLIP is a negative regulator of intrinsic apoptosis pathway in T lymphocytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369410PMC
http://dx.doi.org/10.4049/jimmunol.1400469DOI Listing

Publication Analysis

Top Keywords

apoptosis pathway
12
intrinsic apoptosis
12
intrinsic pathway
8
pathway lymphocytes
8
resting cells
8
c-flip
7
apoptosis
7
pathway
6
intrinsic
5
c-flip protects
4

Similar Publications

Diverse autoinhibitory mechanisms of FIIND-containing proteins: Insight into regulation of NLRP1 and CARD8 inflammasome.

PLoS Pathog

January 2025

Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Function-to-find domain (FIIND)-containing proteins, including NLRP1 and CARD8, are vital components of the inflammasome signaling pathway, critical for the innate immune response. These proteins exist in various forms due to autoproteolysis within the FIIND domain, resulting in full-length (FL), cleaved N-terminal (NT), and cleaved C-terminal (CT) peptides, which form autoinhibitory complexes in the steady state. However, the detailed mechanism remains elusive.

View Article and Find Full Text PDF

Legg-Calvé-Perthes disease (LCPD) involves femoral head osteonecrosis caused by disrupted blood supply, leading to joint deformity and early osteoarthritis. This study investigates the role of miRNA-223-5p in regulating hypoxia-induced apoptosis and enhancing osteogenesis in bone marrow mesenchymal stem cells (BMSCs). Utilizing a juvenile New Zealand white rabbit model of LCPD established through femoral neck ligation, we transfected BMSCs with miR-223-5p mimics, inhibitors, and controls, followed by hypoxic exposure.

View Article and Find Full Text PDF

Background: The skin, with its robust structural integrity and advanced immune defense system, serves as a critical protective barrier against environmental toxins and carcinogenic compounds. Despite this, it remains vulnerable to the harmful effects of certain hazardous agents.

Objectives: This study aimed to investigate the chemopreventive potential of β-caryophyllene (BCP) in mitigating 7,12-dimethylbenz[a]anthracene (DMBA)-induced skin carcinogenesis, focusing on the modulation of apoptosis and PI3K/AKT signaling pathways.

View Article and Find Full Text PDF

Apoptosis in Cancer Biology and Therapy.

Annu Rev Pathol

January 2025

Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; email:

Since its inception, the study of apoptosis has been intricately linked to the field of cancer. The term apoptosis was coined more than five decades ago following its identification in both healthy tissues and malignant neoplasms. The subsequent elucidation of its molecular mechanisms has significantly enhanced our understanding of how cancer cells hijack physiological processes to evade cell death.

View Article and Find Full Text PDF

Background: Sepsis and acute respiratory distress syndrome (ARDS) are common inflammatory conditions in intensive care, with ARDS significantly increasing mortality in septic patients. PANoptosis, a newly discovered form of programmed cell death involving multiple cell death pathways, plays a critical role in inflammatory diseases. This study aims to elucidate the PANoptosis-related genes (PRGs) and their involvement in the progression of sepsis to ARDS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!