Enhanced biological straw saccharification through coculturing of lignocellulose-degrading microorganisms.

Appl Biochem Biotechnol

Centre for Environmental Sustainability and Remediation, School of Applied Sciences, RMIT University, Bundoora, VIC, 3083, Australia,

Published: April 2015

Lignocellulosic waste (LCW) is an abundant, low-cost, and inedible substrate for the induction of lignocellulolytic enzymes for cellulosic bioethanol production using an efficient, environmentally friendly, and economical biological approach. In this study, 30 different lignocellulose-degrading bacterial and 18 fungal isolates were quantitatively screened individually for the saccharification of four different ball-milled straw substrates: wheat, rice, sugarcane, and pea straw. Rice and sugarcane straws which had similar Fourier transform-infrared spectroscopy profiles were more degradable, and resulted in more hydrolytic enzyme production than wheat and pea straws. Crude enzyme produced on native straws performed better than those on artificial substrates (such as cellulose and xylan). Four fungal and five bacterial isolates were selected (based on their high strawase activities) for constructing dual and triple microbial combinations to investigate microbial synergistic effects on saccharification. Combinations such as FUNG16-FUNG17 (Neosartorya fischeri-Myceliophthora thermophila) and RMIT10-RMIT11 (Aeromonas hydrophila-Pseudomonas poae) enhanced saccharification (3- and 6.6-folds, respectively) compared with their monocultures indicating the beneficial effects of synergism between those isolates. Dual isolate combinations were more efficient at straw saccharification than triple combinations in both bacterial and fungal assays. Overall, co-culturing can result in significant increases in saccharification which may offer significant commercial potential for the use of microbial consortia.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-015-1539-9DOI Listing

Publication Analysis

Top Keywords

straw saccharification
8
bacterial fungal
8
rice sugarcane
8
saccharification
6
enhanced biological
4
straw
4
biological straw
4
saccharification coculturing
4
coculturing lignocellulose-degrading
4
lignocellulose-degrading microorganisms
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!